分析 设P(x0,y0),切线方程为y-y0=k(x-x0),根据切线的性质列方程,利用根与系数的关系得出k1k2与x0,y0的关系,由P在双曲线上再得出x0,y0的关系,化简即可得出结论.
解答 解:设P(x0,y0),则圆x2+y2=2的过点P的切线方程为:y-y0=k(x-x0),
∴圆心(0,0)到切线的距离d=$\frac{|k{x}_{0}-{y}_{0}|}{\sqrt{1+{k}^{2}}}$=$\sqrt{2}$,
∴k2x02-2kx0y0+y02=2k2+2,即(x02-2)k2-2x0y0k+y02-2=0,
∴k1k2=$\frac{{{y}_{0}}^{2}-2}{{{x}_{0}}^{2}-2}$,
∵P(x0,y0)在双曲线$\frac{2{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1上,∴$\frac{2{{x}_{0}}^{2}}{3}-\frac{{{y}_{0}}^{2}}{6}=1$,
即y02=4x02-6,
∴k1k2=$\frac{{{y}_{0}}^{2}-2}{{{x}_{0}}^{2}-2}$=$\frac{4{{x}_{0}}^{2}-8}{{{x}_{0}}^{2}-2}$=4.
故答案为4.
点评 本题考查了双曲线的性质,直线与圆的位置关系,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{12}$,$\frac{π}{4}$] | B. | [$\frac{π}{3}$,$\frac{5π}{12}$) | C. | ($\frac{π}{4}$,$\frac{π}{3}$] | D. | [$\frac{π}{6}$,$\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 3 | C. | $2\sqrt{3}$ | D. | $\frac{{9\sqrt{3}}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com