精英家教网 > 高中数学 > 题目详情
20.设P是双曲线$\frac{2{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1上一动点,过点P向圆x2+y2=2作两条切线(P在圆外),这两条切线的斜率分别为k1、k2,则k1k2=4.

分析 设P(x0,y0),切线方程为y-y0=k(x-x0),根据切线的性质列方程,利用根与系数的关系得出k1k2与x0,y0的关系,由P在双曲线上再得出x0,y0的关系,化简即可得出结论.

解答 解:设P(x0,y0),则圆x2+y2=2的过点P的切线方程为:y-y0=k(x-x0),
∴圆心(0,0)到切线的距离d=$\frac{|k{x}_{0}-{y}_{0}|}{\sqrt{1+{k}^{2}}}$=$\sqrt{2}$,
∴k2x02-2kx0y0+y02=2k2+2,即(x02-2)k2-2x0y0k+y02-2=0,
∴k1k2=$\frac{{{y}_{0}}^{2}-2}{{{x}_{0}}^{2}-2}$,
∵P(x0,y0)在双曲线$\frac{2{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1上,∴$\frac{2{{x}_{0}}^{2}}{3}-\frac{{{y}_{0}}^{2}}{6}=1$,
即y02=4x02-6,
∴k1k2=$\frac{{{y}_{0}}^{2}-2}{{{x}_{0}}^{2}-2}$=$\frac{4{{x}_{0}}^{2}-8}{{{x}_{0}}^{2}-2}$=4.
故答案为4.

点评 本题考查了双曲线的性质,直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在△ABC中,A,B,C的对边分别是a,b,c,若c2=acosB+bcosA,a=b=3,则△ABC的周长为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{1}{x}-{2^x}$,则$f(\frac{1}{2})$>f(1)(填“>”或“<”);f(x)在区间$(\frac{n-1}{n},\frac{n}{n+1})$上存在零点,则正整数n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知O为原点,点P为直线2x+y-2=0上的任意一点.非零向量$\overrightarrow{a}$=(m,n).若$\overrightarrow{OP}$•$\overrightarrow{a}$恒为定值,则$\frac{m}{n}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等差数列{an}的公差为2,且a1,a2,a4成等比数列,则a1=2;数列{an}的前n项和Sn=n2+n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由约束条件$\left\{\begin{array}{l}{x≥0,y≥0}\\{y≤-3x+3}\\{y≤kx+1}\end{array}\right.$,确定的可行域D能被半径为$\frac{\sqrt{2}}{2}$的圆面完全覆盖,则实数k的取值范围是$(-∞,\frac{1}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数f(x)=cos2x图象向左平移φ(0<φ<$\frac{π}{2}$)个单位后得到函数g(x)的图象,若函数g(x)在区间[-$\frac{π}{6}$,$\frac{π}{6}$]上单调递减,且函数g(x)的最大负零点在区间(-$\frac{π}{6}$,0)上,则φ的取值范围是(  )
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{3}$,$\frac{5π}{12}$)C.($\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在正三棱柱ABC-A1B1C1中,AA1=2AB,点D是BC的中点,点M在CC1上,且$CM=\frac{1}{8}C{C_1}$.
(1)求证:A1C∥平面AB1D;
(2)求证:平面AB1D⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,E,F分别是BB1,DD1的中点,G为AE的中点且FG=3,则△EFG的面积的最大值为(  )
A.$\frac{3}{2}$B.3C.$2\sqrt{3}$D.$\frac{{9\sqrt{3}}}{4}$

查看答案和解析>>

同步练习册答案