精英家教网 > 高中数学 > 题目详情
5.由约束条件$\left\{\begin{array}{l}{x≥0,y≥0}\\{y≤-3x+3}\\{y≤kx+1}\end{array}\right.$,确定的可行域D能被半径为$\frac{\sqrt{2}}{2}$的圆面完全覆盖,则实数k的取值范围是$(-∞,\frac{1}{3}]$.

分析 先画出由约束条件确定的可行域D,由可行域能被圆覆盖得到可行域是封闭的,判断出直线y=kx+1斜率小于等于 $\frac{1}{3}$即可得出k的范围.

解答 解:∵可行域能被圆覆盖,
∴可行域是封闭的,
作出约束条件$\left\{\begin{array}{l}{x≥0,y≥0}\\{y≤-3x+3}\\{y≤kx+1}\end{array}\right.$的可行域:
可得B(0,1),C(1,0),|BC|=$\sqrt{2}$,
结合图,要使可行域能被$\frac{\sqrt{2}}{2}$为半径的圆覆盖,
只需直线y=kx+1与直线y=-3x+3的交点坐标在圆的内部,
两条直线垂直时,交点恰好在圆上,此时k=$\frac{1}{3}$,
则实数k的取值范围是:(-∞,$\frac{1}{3}$].
故答案为:$(-∞,\frac{1}{3}]$.

点评 本题考查画不等式组表示的平面区域、考查将图形的大小关系转化为不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=2,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=eax-x.
(Ⅰ)若曲线y=f(x)在(0,f(0))处的切线l与直线x+2y+3=0垂直,求a的值;
(Ⅱ)当a≠1时,求证:存在实数x0使f(x0)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$-2x+1.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当0<a≤$\frac{5}{2}$时,求函数f(x)在区间[-a,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设P是双曲线$\frac{2{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1上一动点,过点P向圆x2+y2=2作两条切线(P在圆外),这两条切线的斜率分别为k1、k2,则k1k2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知3sin2θ=4tanθ,且θ≠kπ(k∈Z),则cos2θ等于(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知全集为R,集合M={-1,1,2,3,4},N={x|x2+2x>3},则M∩N={2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若实数x,y,z满足4x+3y+12z=1,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,运行相应的程序,若输入x的值为 2,则输出S的值为(  )
A.64B.84C.340D.1364

查看答案和解析>>

同步练习册答案