精英家教网 > 高中数学 > 题目详情
17.已知全集为R,集合M={-1,1,2,3,4},N={x|x2+2x>3},则M∩N={2,3,4}.

分析 根据题意,分化简集合B,进而求其交集可得答案.

解答 解:全集为R,集合M={-1,1,2,3,4},N={x|x2+2x>3}=(-∞,-3)∪(1,+∞),
则M∩N={2,3,4},
故答案为:{2,3,4}.

点评 本题考查集合的交集运算,首先分析集合的元素,可得集合的意义,再求集合的交集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-|x-\frac{3}{2}|(x≤2)}\\{{e}^{x-2}(-{x}^{2}+8x-12)(x>2)}\end{array}\right.$,若在区间(1,∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…$\frac{f({x}_{n})}{{x}_{n}}$成立,则n的取值集合是(  )
A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知O为原点,点P为直线2x+y-2=0上的任意一点.非零向量$\overrightarrow{a}$=(m,n).若$\overrightarrow{OP}$•$\overrightarrow{a}$恒为定值,则$\frac{m}{n}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由约束条件$\left\{\begin{array}{l}{x≥0,y≥0}\\{y≤-3x+3}\\{y≤kx+1}\end{array}\right.$,确定的可行域D能被半径为$\frac{\sqrt{2}}{2}$的圆面完全覆盖,则实数k的取值范围是$(-∞,\frac{1}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数f(x)=cos2x图象向左平移φ(0<φ<$\frac{π}{2}$)个单位后得到函数g(x)的图象,若函数g(x)在区间[-$\frac{π}{6}$,$\frac{π}{6}$]上单调递减,且函数g(x)的最大负零点在区间(-$\frac{π}{6}$,0)上,则φ的取值范围是(  )
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{3}$,$\frac{5π}{12}$)C.($\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将函数$y=sin(2x-\frac{π}{6})$的图象向右平移m(m>0)个单位长度,所得函数图象关于y轴对称,则m的最小值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在正三棱柱ABC-A1B1C1中,AA1=2AB,点D是BC的中点,点M在CC1上,且$CM=\frac{1}{8}C{C_1}$.
(1)求证:A1C∥平面AB1D;
(2)求证:平面AB1D⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=(-1,2),b=(0,3),如果向量$\overrightarrow{a}$+2$\overrightarrow{b}$与$\overrightarrow{a}$-x$\overrightarrow{b}$垂直,则实数x的值为(  )
A.1B.-1C.$\frac{17}{24}$D.-$\frac{17}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=sin2ωx-2\sqrt{3}{cos^2}ωx+1(ω>0)$在区间(π,2π)内没有极值点,则ω的取值范围为(  )
A.$({\frac{5}{12},\frac{11}{24}}]$B.$({0,\frac{5}{12}}]∪[{\frac{11}{24},\frac{1}{2}})$C.$({0,\frac{1}{2}})$D.$({0,\frac{5}{24}}]∪[{\frac{5}{12},\frac{11}{24}}]$

查看答案和解析>>

同步练习册答案