精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-|x-\frac{3}{2}|(x≤2)}\\{{e}^{x-2}(-{x}^{2}+8x-12)(x>2)}\end{array}\right.$,若在区间(1,∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…$\frac{f({x}_{n})}{{x}_{n}}$成立,则n的取值集合是(  )
A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}

分析 由题意可知n为方程f(x)=kx的解的个数,判断f(x)的单调性,作出y=f(x)与y=kx的函数图象,根据图象交点个数判断.

解答 解:设$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…$\frac{f({x}_{n})}{{x}_{n}}$=k,则方程$\frac{f(x)}{x}=k$有n个根,
即f(x)=kx有n个根,
f(x)=$\left\{\begin{array}{l}{x-1,x≤\frac{3}{2}}\\{-x+2,\frac{3}{2}<x≤2}\\{{e}^{x-2}(-{x}^{2}+8x-12),x>2}\end{array}\right.$,
∴f(x)在(1,$\frac{3}{2}$)上单调递增,在($\frac{3}{2}$,2)上单调递减.
当x>2时,f′(x)=ex-2(-x2+8x-12)+ex-2(-2x+8)=ex-2(-x2+6x-4),
设g(x)=-x2+6x-4(x>2),令g(x)=0得x=3+$\sqrt{5}$,
∴当2$<x<3+\sqrt{5}$时,g(x)>0,当x>3+$\sqrt{5}$时,g(x)<0,
∴f(x)在(2,3+$\sqrt{5}$)上单调递增,在(3+$\sqrt{5}$,+∞)上单调递减,
作出f(x)与y=kx的大致函数图象如图所示:

由图象可知f(x)=kx的交点个数可能为1,2,3,4,
∵n≥2,故n的值为2,3,4.
故选D.

点评 本题考查了方程的解与函数图象的关系,函数的单调性判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=alnx-bx3,a,b为实数,b≠0,e为自然对数的底数,e=2.71828.
(1)当a<0,b=-1时,设函数f(x)的最小值为g(a),求g(a)的最大值;
(2)若关于x的方程f(x)=0在区间(1,e]上有两个不同的实数解,求$\frac{a}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知等比数列{an}的各项均为正数,且a1+2a2=5,4a32=a2a6
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=2,且bn+1=bn+an,求数列{bn}的通项公式;
(3)设cn=$\frac{a_n}{{{b_n}{b_{n+1}}}}$,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=2,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.△ABC的内角A,B,C所对的边长分别为a,b,c,若acosC+ccosA=2bcosB,则B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知过点A(0,1)的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,B为椭圆上的任意一点,且$\sqrt{3}$|BF1|,|F1F2|,$\sqrt{3}$|BF2|成等差数列.
(1)求椭圆C的标准方程;
(2)直线l:y=k(x+2)交椭圆于P,Q两点,若点A始终在以PQ为直径的圆外,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=sin(ωx)(ω>0)在$[{\frac{π}{4},\frac{π}{2}}]$上为减函数,则ω的取值范围为(  )
A.(0,3]B.(0,4]C.[2,3]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=eax-x.
(Ⅰ)若曲线y=f(x)在(0,f(0))处的切线l与直线x+2y+3=0垂直,求a的值;
(Ⅱ)当a≠1时,求证:存在实数x0使f(x0)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知全集为R,集合M={-1,1,2,3,4},N={x|x2+2x>3},则M∩N={2,3,4}.

查看答案和解析>>

同步练习册答案