精英家教网 > 高中数学 > 题目详情
2.△ABC的内角A,B,C所对的边长分别为a,b,c,若acosC+ccosA=2bcosB,则B=$\frac{π}{3}$.

分析 利用已知条件以及正弦定理求出B的余弦值,然后求角B的大小;

解答 解:由acosC+ccosA=2bcosB以及正弦定理可知:sinAcosC+sinCcosA=2sinBcosB,
即sin(A+C)=2sinBcosB.
因为A+B+C=π,
所以sin(A+C)=sinB≠0,
所以cosB=$\frac{1}{2}$.
∵B∈(0,π)
∴B=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.

点评 本题考查正弦定理,三角形的内角和的应用,也可以利用余弦定理解答本题,注意角的范围的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C的对边分别为a,b,c,若满足2bcosA=2c-$\sqrt{3}$a,则角B的大小为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的离心率为$\sqrt{5}$,则抛物线y2=4x的焦点到双曲线的渐近线的距离是(  )
A.$\frac{{\sqrt{5}}}{10}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{4\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,A,B,C的对边分别是a,b,c,若c2=acosB+bcosA,a=b=3,则△ABC的周长为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-1≥0\\ x≤3\end{array}\right.$,则z=2x-3y的最大值是(  )
A.-3B.-6C.15D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-|x-\frac{3}{2}|(x≤2)}\\{{e}^{x-2}(-{x}^{2}+8x-12)(x>2)}\end{array}\right.$,若在区间(1,∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…$\frac{f({x}_{n})}{{x}_{n}}$成立,则n的取值集合是(  )
A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|-1<x<2},B={x|0<x<2},则∁AB=(  )
A.(-1,0)B.(-1,0]C.(0,2)D.[0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{1}{x}-{2^x}$,则$f(\frac{1}{2})$>f(1)(填“>”或“<”);f(x)在区间$(\frac{n-1}{n},\frac{n}{n+1})$上存在零点,则正整数n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数f(x)=cos2x图象向左平移φ(0<φ<$\frac{π}{2}$)个单位后得到函数g(x)的图象,若函数g(x)在区间[-$\frac{π}{6}$,$\frac{π}{6}$]上单调递减,且函数g(x)的最大负零点在区间(-$\frac{π}{6}$,0)上,则φ的取值范围是(  )
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{3}$,$\frac{5π}{12}$)C.($\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{4}$)

查看答案和解析>>

同步练习册答案