精英家教网 > 高中数学 > 题目详情
17.设x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-1≥0\\ x≤3\end{array}\right.$,则z=2x-3y的最大值是(  )
A.-3B.-6C.15D.12

分析 先根据约束条件画出可行域,再利用几何意义求最值,z=2x-3y表示直线在y轴上的截距的$\frac{1}{3}$,只需求出可行域直线在y轴上的截距最小值即可.

解答 解:不等式组表示的平面区域如图所示,
当直线z=2x-3y过点A时,
在y轴上截距最小,由$\left\{\begin{array}{l}{x=3}\\{x+y-1=0}\end{array}\right.$解得A(3,-2)
此时z取得最大值12.
故选:D.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.据记载,在公元前3世纪,阿基米德已经得出了前n个自然数平方和的一般公式.如图是一个求前n个自然数平方和的算法流程图,若输入x的值为1,则输出的S的值为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知动点A(xA,yA)在直线l:y=6-x上,动点B在圆C:x2+y2-2x-2y-2=0上,若∠CAB=30°,则xA的最大值为(  )
A.2B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若${(x-\frac{a}{x})^5}$的展示式中x3的系数为30,则实数a=(  )
A.-6B.6C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等腰直角△ABC的斜边BC=2,沿斜边的高线AD将△ABC折起,使二面角B-AD-C为$\frac{π}{3}$,则四面体ABCD的外接球的表面积为$\frac{7π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.△ABC的内角A,B,C所对的边长分别为a,b,c,若acosC+ccosA=2bcosB,则B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),过点P(-2,-4)且倾斜角为$\frac{π}{4}$的直线l与曲线C相交于A,B两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若|AP|•|BP|=|BA|2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知{an}为无穷等比数列,且公比q>1,记Sn为{an}的前n项和,则下面结论正确的是(  )
A.a3>a2B.a1+a2>0C.$\{{a_n}^2\}$是递增数列D.Sn存在最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知△ABC的顶点B,C在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,椭圆的一个焦点为A,另一个焦点在边BC上,若△ABC是边长为2的正三角形,则b=(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{6}}{4}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

同步练习册答案