精英家教网 > 高中数学 > 题目详情
12.已知等腰直角△ABC的斜边BC=2,沿斜边的高线AD将△ABC折起,使二面角B-AD-C为$\frac{π}{3}$,则四面体ABCD的外接球的表面积为$\frac{7π}{3}$.

分析 由题意,△BCD是等边三角形,边长为1,外接圆的半径为$\frac{\sqrt{3}}{3}$,AD=1,可得四面体ABCD的外接球的半径=$\sqrt{\frac{1}{4}+\frac{1}{3}}$=$\sqrt{\frac{7}{12}}$,即可求出四面体ABCD的外接球的表面积.

解答 解:由题意,△BCD是等边三角形,边长为1,外接圆的半径为$\frac{\sqrt{3}}{3}$,
∵AD=1,∴四面体ABCD的外接球的半径=$\sqrt{\frac{1}{4}+\frac{1}{3}}$=$\sqrt{\frac{7}{12}}$,
∴四面体ABCD的外接球的表面积为$4π•\frac{7}{12}$=$\frac{7π}{3}$,
故答案为:$\frac{7π}{3}$.

点评 本题考查四面体ABCD的外接球的表面积,考查学生的计算能力,确定四面体ABCD的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xoy中,直线l:x+y-2=0,以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1:ρ=1,将曲线C1上所有点的横坐标伸长为原来的$2\sqrt{2}$倍,纵坐标伸长为原来的2倍得到曲线C2,又直线l与曲线C2交于A,B两点.
(1)求曲线C2的直角坐标方程;
(2)设定点P(2,0),求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,ABCD是以O为圆心、半径为2的圆的内接正方形,EFGH是正方形ABCD的内接正方形,且E、F、G、H分别为AB、BC、CD、DA的中点.将一枚针随机掷到圆O内,用M表示事件“针落在正方形ABCD内”,N表示事件“针落在正方形EFGH内”,则P(N|M)=(  )
A.$\frac{1}{π}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设i为虚数单位,若复数$\frac{z}{-i}$在复平面内对应的点为(1,2),则z=(  )
A.-2+iB.2-iC.-1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)与两条平行直线l1:y=x+b与l2:y=x-b分别相交于四点A,B,D,C,且四边形ABCD的面积为$\frac{{8{b^2}}}{3}$,则椭圆E的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-1≥0\\ x≤3\end{array}\right.$,则z=2x-3y的最大值是(  )
A.-3B.-6C.15D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正四棱锥P-ABCD中,PA=AB=2,则该四棱锥外接球的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,四边形ABCD为直角梯形,∠ABC=90°,CB∥DA,AB=20$\sqrt{2}$,DA=10,CB=20,若AB边上有一点P,使得∠CPD最大,则AP=10$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,三棱锥V-ABC的底面是以B为直角顶点的等腰直角三角形,侧面VAC与底面ABC垂直,若以垂直于平面VAC的方向作为正视图的方向,垂直于平面ABC的方向为俯视图的方向,已知其正视图的面积为2$\sqrt{3}$,则其侧视图的面积是(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2$\sqrt{3}$D.3

查看答案和解析>>

同步练习册答案