精英家教网 > 高中数学 > 题目详情
20.设i为虚数单位,若复数$\frac{z}{-i}$在复平面内对应的点为(1,2),则z=(  )
A.-2+iB.2-iC.-1+2iD.1-2i

分析 由复数$\frac{z}{-i}$在复平面内对应的点为(1,2),得到$\frac{z}{-i}$=1+2i,化简即可

解答 解:复数$\frac{z}{-i}$在复平面内对应的点为(1,2),
则$\frac{z}{-i}$=1+2i,
∴z=2-i,
故选:B.

点评 本题考查复数代数形式的混合运算,复数与复平面内对应点之间的关系.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知{an}是公差为d的等差数列,{bn} 是公比为q的等比数列,q≠±1,正整数组E=(m,p,r)(m<p<r)
(1)若a1+b2=a2+b3=a3+b1,求q的值;
(2)若数组E中的三个数构成公差大于1的等差数列,且am+bp=ap+br=ar+bm,求q的最大值.
(3)若bn=(-$\frac{1}{2}$)n-1,am+bm=ap+bp=ar+br=0,试写出满足条件的一个数组E和对应的通项公式an.(注:本小问不必写出解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足lna1+$\frac{{ln{a_2}}}{2}+\frac{{ln{a_3}}}{3}+…+\frac{{ln{a_n}}}{n}$=2n,则数列{an}的前项的乘积为en(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知动点A(xA,yA)在直线l:y=6-x上,动点B在圆C:x2+y2-2x-2y-2=0上,若∠CAB=30°,则xA的最大值为(  )
A.2B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=sin(\frac{π}{3}-ωx)(ω>0)$向左平移半个周期得g(x)的图象,若g(x)在[0,π]上的值域为$[-\frac{{\sqrt{3}}}{2},1]$,则ω的取值范围是(  )
A.$[\frac{1}{6},1]$B.$[\frac{2}{3},\frac{3}{2}]$C.$[\frac{1}{3},\frac{7}{6}]$D.$[\frac{5}{6},\frac{5}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若${(x-\frac{a}{x})^5}$的展示式中x3的系数为30,则实数a=(  )
A.-6B.6C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等腰直角△ABC的斜边BC=2,沿斜边的高线AD将△ABC折起,使二面角B-AD-C为$\frac{π}{3}$,则四面体ABCD的外接球的表面积为$\frac{7π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),过点P(-2,-4)且倾斜角为$\frac{π}{4}$的直线l与曲线C相交于A,B两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若|AP|•|BP|=|BA|2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是各项为正数的等差数列,Sn为其前n项和,且4Sn=(an+1)2
(Ⅰ)求a1,a2的值及{an}的通项公式;
(Ⅱ)求数列$\{{S_n}-\frac{7}{2}{a_n}\}$的最小值.

查看答案和解析>>

同步练习册答案