| A. | $[\frac{1}{6},1]$ | B. | $[\frac{2}{3},\frac{3}{2}]$ | C. | $[\frac{1}{3},\frac{7}{6}]$ | D. | $[\frac{5}{6},\frac{5}{3}]$ |
分析 利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再根据ωx-$\frac{π}{3}$∈[-$\frac{π}{3}$,ωπ-$\frac{π}{3}$],f(x)在[0,π]上的值域为$[{-\frac{{\sqrt{3}}}{2},1}]$,可得$\frac{π}{2}$≤ωπ-$\frac{π}{3}$≤$\frac{4π}{3}$,由此求得ω的取值范围.
解答 解:函数$f(x)=sin(\frac{π}{3}-ωx)(ω>0)$=-sin(ωx-$\frac{π}{3}$)向左平移半个周期得
g(x)=-sin(ωx+ω•$\frac{1}{2}•\frac{2π}{ω}$-$\frac{π}{3}$)=sin(ωx-$\frac{π}{3}$)的图象,
由x∈[0,π],可得ωx-$\frac{π}{3}$∈[-$\frac{π}{3}$,ωπ-$\frac{π}{3}$],由于f(x)在[0,π]上的值域为$[{-\frac{{\sqrt{3}}}{2},1}]$.
即函数的最小值为$-\frac{{\sqrt{3}}}{2}$,最大值为1,则$\frac{π}{2}$≤ωπ-$\frac{π}{3}$≤$\frac{4π}{3}$,得$\frac{5}{6}≤ω≤\frac{5}{3}$.
综上,ω的取值范围是$[{\frac{5}{6},\frac{5}{3}}]$,
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{π}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,+∞) | B. | (4,+∞) | C. | (-∞,-2] | D. | (-∞,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2+i | B. | 2-i | C. | -1+2i | D. | 1-2i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com