精英家教网 > 高中数学 > 题目详情
5.若直线y=2x+b为曲线y=ex+x的一条切线,则实数b的值是1.

分析 先设出切点坐标P(x0,ex0+x0),再利用导数的几何意义写出过P的切线方程,最后由直线是y=2x+b是曲线y=ex+x的一条切线,求出实数b的值.

解答 解:∵y=ex+x,
∴y′=ex+1,
设切点为P(x0,ex0+x0),
则过P的切线方程为y-ex0-x0=(ex0+1)(x-x0),
整理,得y=(ex0+1)x-ex0•x0+ex0
∵直线是y=2x+b是曲线y=ex+x的一条切线,
∴ex0+1=2,ex0=1,x0=0,
∴b=1.
故答案为1.

点评 本题考查导数的几何意义,解题时要注意发现隐含条件,辨别切线的类型,分别采用不同策略解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在公比为q且各项均为正数的等比数列{an}中,Sn为{an}的前n项和.若a1=$\frac{1}{{q}^{2}}$,且S5=S2+2,则q的值为$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若不等式ln(x+2)+a(x2+x)≥0对于任意的x∈[-1,+∞)恒成立,则实数a的取值范围是(  )
A.[0,+∞)B.[0,1]C.[0,e]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{{x}^{2}}{a-3}$+$\frac{{y}^{2}}{2-a}$=1,焦点在y轴上,若焦距为4,则a等于(  )
A.$\frac{3}{2}$B.5C.7D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A(-4,0),B(-1,0),C(-4,3),动点P、Q满足$\frac{|PA|}{|PB|}$=$\frac{|QA|}{|QB|}$=2,则|$\overrightarrow{CP}$+$\overrightarrow{CQ}$|取值范围是 (  )
A.[1,16]B.[6,14]C.[4,16]D.[$\sqrt{13}$,3$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是公差为d的等差数列,{bn} 是公比为q的等比数列,q≠±1,正整数组E=(m,p,r)(m<p<r)
(1)若a1+b2=a2+b3=a3+b1,求q的值;
(2)若数组E中的三个数构成公差大于1的等差数列,且am+bp=ap+br=ar+bm,求q的最大值.
(3)若bn=(-$\frac{1}{2}$)n-1,am+bm=ap+bp=ar+br=0,试写出满足条件的一个数组E和对应的通项公式an.(注:本小问不必写出解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(ax-1)e2x+x+1(其中e为自然对数的e底数).
(Ⅰ)若a=0,求函数f(x)的单调区间;
(Ⅱ)对?x∈(0,+∞),f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow m=({\sqrt{3}cosx,-1}),\overrightarrow n=({sinx,{{cos}^2}x})$.
(1)当x=$\frac{π}{3}$时,求$\overrightarrow m•\overrightarrow n$的值;
(2)若$x∈[{0,\frac{π}{4}}]$,且$\overrightarrow m•\overrightarrow n=\frac{{\sqrt{3}}}{3}-\frac{1}{2}$,求cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=sin(\frac{π}{3}-ωx)(ω>0)$向左平移半个周期得g(x)的图象,若g(x)在[0,π]上的值域为$[-\frac{{\sqrt{3}}}{2},1]$,则ω的取值范围是(  )
A.$[\frac{1}{6},1]$B.$[\frac{2}{3},\frac{3}{2}]$C.$[\frac{1}{3},\frac{7}{6}]$D.$[\frac{5}{6},\frac{5}{3}]$

查看答案和解析>>

同步练习册答案