精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=(ax-1)e2x+x+1(其中e为自然对数的e底数).
(Ⅰ)若a=0,求函数f(x)的单调区间;
(Ⅱ)对?x∈(0,+∞),f(x)>0恒成立,求a的取值范围.

分析 (Ⅰ)a=0时,f′(x)=-2e2x+1,由此利用导数性质能求出函数f(x)的单调区间.
(Ⅱ)f′(x)=(2ax-2+a)e2x+1,令g(x)=(2ax-2+a)e2x+1,则g′(x)=4(ax-1+a)e2x,由此利用分类讨论思想,结合导数应用能求出实数a的取值范围.

解答 解:(Ⅰ)a=0时,f(x)=-e2x+x+1,f′(x)=-2e2x+1,
由f′(x)=0,解得x=-$\frac{ln2}{2}$,
当x∈(-∞,-$\frac{ln2}{2}$)时,f′(x)>0,当x∈(-$\frac{ln2}{2}$,+∞)时,f′(x)<0,
∴函数f(x)的单调增区间为(-∞,-$\frac{ln2}{2}$),单调减区间为(-$\frac{ln2}{2}$,+∞).
(Ⅱ)f′(x)=(2ax-2+a)e2x+1,令g(x)=(2ax-2+a)e2x+1,
则g′(x)=4(ax-1+a)e2x
①若a≥1,当x∈(0,+∞),g′(x)>0,从而g(x)在(0,+∞)上单调递增且g(0)=a-1≥0,
∴x∈(0,+∞)时,g(x)>0即f′(x)>0,从而f(x)在(0,+∞)上单调递增且f(0)=0,
∴x∈(0,+∞)时,f(x)>0恒成立,符合题意.
②若a≤0,则x∈(0,+∞)时,g′(x)<0恒成立,
∴g(x)在(0,+∞)单调递减,则g(x)<g(0)=a-1,
即x∈(0,+∞)时,f′(x)<0,
∴函数f(x)在(0,+∞)单调递减,此时f(x)<f(0)=0,不符合题意.
③若0<a<1,由g′(x)=4(ax-1+a)e2x=0,得x=$\frac{1}{a}-1$,且x∈(0,$\frac{1}{a}-1$),g′(x)<0,
∴函数y=g(x)在(0,$\frac{1}{a}-1$)单调递减.
∴x∈(0,$\frac{1}{a}-1$)时,g(x)<g(0)=a-1<0,即x$∈(0,\frac{1}{a}-1)$时,f′(x)<0,
∴函数y=f(x)在(0,$\frac{1}{a}-1$)单调递减,
∴x∈(0,$\frac{1}{a}-1$)时,f(x)<f(0)=0,不符合题意.
综上所述,实数a的取值范围是[1,+∞).

点评 本题考查函数的单调性、函数的最值、导数性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,函数与方程思想、分类与整合思想,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在同一直角坐标系中,函数$y=sin({x+\frac{π}{3}})({x∈[{0,2π})})$的图象和直线y=$\frac{1}{2}$的交点的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE(A1∉平面ABCD).若M、O分别为线段A1C、DE的中点,则在△ADE翻转过程中,下列说法错误的是(  )
A.与平面A1DE垂直的直线必与直线BM垂直
B.过E作EG∥BM,G∈平面A1DC,则∠A1EG为定值
C.一定存在某个位置,使DE⊥MO
D.三棱锥A1-ADE外接球半径与棱AD的长之比为定值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若直线y=2x+b为曲线y=ex+x的一条切线,则实数b的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知AB为圆O的一条弦,点P为弧$\widehat{AB}$的中点,过点P任作两条弦PC,PD分别交AB于点E,F
求证:PE•PC=PF•PD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xoy中,直线l:x+y-2=0,以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1:ρ=1,将曲线C1上所有点的横坐标伸长为原来的$2\sqrt{2}$倍,纵坐标伸长为原来的2倍得到曲线C2,又直线l与曲线C2交于A,B两点.
(1)求曲线C2的直角坐标方程;
(2)设定点P(2,0),求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直四棱柱底面是边长为2的菱形,侧面对角线的长为$2\sqrt{3}$,则该直四棱柱的侧面积为16$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图(1)在平面六边形ABCDEF,四边形ABCD是矩形,且AB=4,BC=2,AE=DE=$\sqrt{2}$,BF=CF=$\sqrt{5}$,点M,N分别是AD,BC的中点,分别沿直线AD,BC将△DEF,△BCF翻折成如图(2)的空间几何体ABCDEF.
(1)利用下面的结论1或结论2,证明:E、F、M、N四点共面;
结论1:过空间一点作已知直线的垂面,有且只有一个;
结论2:过平面内一条直线作该平面的垂面,有且只有一个.
(2)若二面角E-AD-B和二面角F-BC-A都是60°,求二面角A-BE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)与两条平行直线l1:y=x+b与l2:y=x-b分别相交于四点A,B,D,C,且四边形ABCD的面积为$\frac{{8{b^2}}}{3}$,则椭圆E的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案