精英家教网 > 高中数学 > 题目详情
8.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE(A1∉平面ABCD).若M、O分别为线段A1C、DE的中点,则在△ADE翻转过程中,下列说法错误的是(  )
A.与平面A1DE垂直的直线必与直线BM垂直
B.过E作EG∥BM,G∈平面A1DC,则∠A1EG为定值
C.一定存在某个位置,使DE⊥MO
D.三棱锥A1-ADE外接球半径与棱AD的长之比为定值

分析 对于A,延长CB,DE交于H,连接A1H,运用中位线定理和线面平行的判定定理,可得BM∥平面A1DE,即可判断A;
对于B,运用平行线的性质和解三角形的余弦定理,以及异面直线所成角的定义,即可判断B;
对于C,连接A1O,运用线面垂直的判定定理和性质定理,可得AC与DE垂直,即可判断C;
对于D,由直角三角形的性质,可得三棱锥A1-ADE外接球球心为O,即可判断D.

解答 解:对于A,延长CB,DE交于H,连接A1H,由E为AB的中点,
可得B为CH的中点,又M为A1C的中点,可得BM∥A1H,BM?平面A1DE,
A1H?平面A1DE,则BM∥平面A1DE,故与平面A1DE垂直的直线必与直线BM垂直,则A正确;
对于B,设AB=2AD=2a,过E作EG∥BM,G∈平面A1DC,
则∠A1EG=∠EA1H,
在△EA1H中,EA1=a,EH=DE=$\sqrt{2}$a,A1H=$\sqrt{{a}^{2}+2{a}^{2}-2•a•\sqrt{2}a•(-\frac{\sqrt{2}}{2})}$
=$\sqrt{5}$a,则∠EA1H为定值,即∠A1EG为定值,则B正确;
对于C,连接A1O,可得DE⊥A1O,若DE⊥MO,即有DE⊥平面A1MO,
即有DE⊥A1C,由A1C在平面ABCD中的射影为AC,
可得AC与DE垂直,但AC与DE不垂直.
则不存在某个位置,使DE⊥MO,则C不正确;
对于D,连接OA,由直角三角形斜边的中线长为斜边的一半,可得
三棱锥A1-ADE外接球球心为O,半径为$\frac{\sqrt{2}}{2}$a,
即有三棱锥A1-ADE外接球半径与棱AD的长之比为定值.则D正确.
故选:C.

点评 本题以命题的真假判断与应用为载体,考查了线面、面面平行与垂直的判定和性质定理,考查空间想象能力和推理能力,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(x+φ)-2cos(x+φ)(0<φ<π)的图象关于直线x=π对称,则cos2φ=(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.曲线C是平面内与两个定点F1(-2,0),F2(2,0)的距离之积等于9的点的轨迹.给出下列命题:
①曲线C过坐标原点;
②曲线C关于坐标轴对称;
③若点P在曲线C上,则△F1PF2的周长有最小值10;
④若点P在曲线C上,则△F1PF2面积有最大值$\frac{9}{2}$.
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若不等式ln(x+2)+a(x2+x)≥0对于任意的x∈[-1,+∞)恒成立,则实数a的取值范围是(  )
A.[0,+∞)B.[0,1]C.[0,e]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,F1,F2为左,右焦点,以F1,F2为直径的圆与椭圆在第一、三象限的交点分别为A、B,若直线AB与直线x+$\sqrt{3}$y-7=0互相垂直,则椭圆的离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\sqrt{3}$-1D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{{x}^{2}}{a-3}$+$\frac{{y}^{2}}{2-a}$=1,焦点在y轴上,若焦距为4,则a等于(  )
A.$\frac{3}{2}$B.5C.7D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A(-4,0),B(-1,0),C(-4,3),动点P、Q满足$\frac{|PA|}{|PB|}$=$\frac{|QA|}{|QB|}$=2,则|$\overrightarrow{CP}$+$\overrightarrow{CQ}$|取值范围是 (  )
A.[1,16]B.[6,14]C.[4,16]D.[$\sqrt{13}$,3$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(ax-1)e2x+x+1(其中e为自然对数的e底数).
(Ⅰ)若a=0,求函数f(x)的单调区间;
(Ⅱ)对?x∈(0,+∞),f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a=sin3,b=sin1.5,c=cos8.5,执行如图所示的程序框图,输出的是(  )
A.cB.bC.aD.$\frac{a+b+c}{3}$

查看答案和解析>>

同步练习册答案