3£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÖУ¬F1£¬F2Ϊ×ó£¬ÓÒ½¹µã£¬ÒÔF1£¬F2Ϊֱ¾¶µÄÔ²ÓëÍÖÔ²ÔÚµÚÒ»¡¢ÈýÏóÏ޵Ľ»µã·Ö±ðΪA¡¢B£¬ÈôÖ±ÏßABÓëÖ±Ïßx+$\sqrt{3}$y-7=0»¥Ïà´¹Ö±£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}+1}{2}$B£®$\frac{\sqrt{3}-1}{2}$C£®$\sqrt{3}$-1D£®$\frac{\sqrt{5}-1}{2}$

·ÖÎö ÓÉÌâÒâµÃÖ±ÏßABµÄбÂÊΪ$\sqrt{3}$£¬¼´Çãб½ÇΪ$\frac{¦Ð}{3}$£®¸ù¾Ý¶Ô³ÆÐÔ¿ÉÖª$¡ÏAO{F}_{2}=\frac{¦Ð}{3}$£¬$¡ÏA{F}_{2}{F}_{1}=\frac{¦Ð}{6}$
ÔÚRt¡÷AF1F2ÖУ¬$A{F}_{1}=\sqrt{3}c£¬A{F}_{2}=c$£¬Ôò$\sqrt{3}c+c=2a$£¬⇒$\frac{c}{a}=\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$£®

½â´ð ½â£ºÈçͼËùʾ£¬¡ßÖ±ÏßABÓëÖ±Ïßx+$\sqrt{3}$y-7=0»¥Ïà´¹Ö±£¬¡àÖ±ÏßABµÄбÂÊΪ$\sqrt{3}$£¬¼´Çãб½ÇΪ$\frac{¦Ð}{3}$£®
¸ù¾Ý¶Ô³ÆÐÔ¿ÉÖª$¡ÏAO{F}_{2}=\frac{¦Ð}{3}$£¬$¡ÏA{F}_{2}{F}_{1}=\frac{¦Ð}{6}$
ÔÚRt¡÷AF1F2ÖУ¬$A{F}_{1}=\sqrt{3}c£¬A{F}_{2}=c$£¬
¸ù¾ÝÍÖÔ²µÄ¶¨ÒåÔò$\sqrt{3}c+c=2a$£¬⇒$\frac{c}{a}=\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$£®
¹ÊÑ¡C£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄÀëÐÄÂÊ£¬½âÌâµÄ¹Ø¼üÊÇÒªºÏÀíÀûÓÃÍÖÔ²¡¢Ô²µÄÐÔÖÊ£¬Ö±ÏßµÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª¼¯ºÏA={x|1£¼2x¡Ü16}£¬B={x|x£¼a}£¬ÈôA¡ÉB=A£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®a£¾4B£®a¡Ý4C£®a¡Ý0D£®a£¾0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚË®ÓòÉϽ¨Ò»¸öÑÝÒչ㳡£¬ÑÝÒչ㳡ÓÉ¿´Ì¨¢ñ£¬¿´Ì¨¢ò£¬Èý½ÇÐÎË®ÓòABC£¬¼°¾ØÐαíÑÝ̨BCDEËĸö²¿·Ö¹¹³É£¨Èçͼ£©£¬¿´Ì¨¢ñ£¬¿´Ì¨¢òÊÇ·Ö±ðÒÔAB£¬ACΪֱ¾¶µÄÁ½¸ö°ëÔ²ÐÎÇøÓò£¬ÇÒ¿´Ì¨¢ñµÄÃæ»ýÊÇ¿´Ì¨¢òµÄÃæ»ýµÄ3±¶£¬¾ØÐαíÑÝ̨BCDE ÖУ¬CD=10Ã×£¬Èý½ÇÐÎË®ÓòABCµÄÃæ»ýΪ$400\sqrt{3}$ƽ·½Ã×£¬Éè¡ÏBAC=¦È£®
£¨1£©ÇóBCµÄ³¤£¨Óú¬¦ÈµÄʽ×Ó±íʾ£©£»
£¨2£©Èô±íÑÝ̨ÿƽ·½Ã×µÄÔì¼ÛΪ0.3ÍòÔª£¬Çó±íÑÝ̨µÄ×îµÍÔì¼Û£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÎªÁ˵õ½º¯Êýy=cos2xµÄͼÏó£¬Ö»Òª°Ñº¯Êý$y=sin£¨2x-\frac{¦Ð}{3}£©$µÄͼÏóÉÏËùÓеĵ㣨¡¡¡¡£©
A£®ÏòÓÒÆ½ÐÐÒÆ¶¯$\frac{5¦Ð}{12}$¸öµ¥Î»³¤¶ÈB£®Ïò×óƽÐÐÒÆ¶¯$\frac{5¦Ð}{12}$¸öµ¥Î»³¤¶È
C£®ÏòÓÒÆ½ÐÐÒÆ¶¯$\frac{5¦Ð}{6}$¸öµ¥Î»³¤¶ÈD£®Ïò×óƽÐÐÒÆ¶¯$\frac{5¦Ð}{6}$¸öµ¥Î»³¤¶È

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨a£¾0£¬b£¾0£©$µÄÀëÐÄÂʵÈÓÚ2£¬ÆäÁ½Ìõ½¥½üÏßÓëÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ×¼Ïß·Ö±ð½»ÓÚA£¬BÁ½µã£¬OÎª×ø±êÔ­µã£¬${S_{¡÷AOB}}=\frac{{\sqrt{3}}}{4}$£¬Ôòp=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬¾ØÐÎABCDÖУ¬AB=2AD£¬EΪ±ßABµÄÖе㣬½«¡÷ADEÑØÖ±ÏßDE·­×ª³É¡÷A1DE£¨A1∉Æ½ÃæABCD£©£®ÈôM¡¢O·Ö±ðΪÏß¶ÎA1C¡¢DEµÄÖе㣬ÔòÔÚ¡÷ADE·­×ª¹ý³ÌÖУ¬ÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®ÓëÆ½ÃæA1DE´¹Ö±µÄÖ±Ïß±ØÓëÖ±ÏßBM´¹Ö±
B£®¹ýE×÷EG¡ÎBM£¬G¡ÊÆ½ÃæA1DC£¬Ôò¡ÏA1EGΪ¶¨Öµ
C£®Ò»¶¨´æÔÚij¸öλÖã¬Ê¹DE¡ÍMO
D£®ÈýÀâ×¶A1-ADEÍâ½ÓÇò°ë¾¶ÓëÀâADµÄ³¤Ö®±ÈΪ¶¨Öµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖª¡ÏB=30¡ã£¬¡÷ABCµÄÃæ»ýΪ$\frac{3}{2}$£¬ÇÒsinA+sinC=2sinB£¬ÔòbµÄֵΪ£¨¡¡¡¡£©
A£®4+2$\sqrt{3}$B£®4-2$\sqrt{3}$C£®$\sqrt{3}$-1D£®$\sqrt{3}$+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÒÑÖªABΪԲOµÄÒ»ÌõÏÒ£¬µãPΪ»¡$\widehat{AB}$µÄÖе㣬¹ýµãPÈÎ×÷Á½ÌõÏÒPC£¬PD·Ö±ð½»ABÓÚµãE£¬F
ÇóÖ¤£ºPE•PC=PF•PD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®2016Äê9ÔÂ30ÈÕÖܽÜÂס°µØ±í×îÇ¿¡±ÊÀ½çѲ»ØÑݳª»áÔÚɽÎ÷Ê¡ÌåÓýÖÐÐÄºìµÆÁýÌåÓý³¡¾ÙÐУ®Ä³¸ßУ4000ÃûÅ®Éú£¬6000ÃûÄÐÉúÖа´·Ö²ã³éÑù³éÈ¡ÁË50ÃûѧÉú½øÐÐÁËÎʾíµ÷²é£¬µ÷²é·¢ÏÖ¹Û¿´Ñݳª»áÓëδ¹Û¿´Ñݳª»áµÄÈËÊýÏàͬ£¬ÆäÖйۿ´Ñݳª»áµÄÅ®ÉúΪ15ÈË£®
£¨1£©¸ù¾Ýµ÷²é½á¹ûÍê³ÉÈçÏÂ2¡Á2ÁÐÁª±í£¬²¢Í¨¹ý¼ÆËãÅжÏÊÇ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.005µÄǰÌáÏÂÈÏΪ¡°¹Û¿´Ñݳª»áÓëÐÔ±ðÓйء±£¿
£¨2£©´Ó¹Û¿´Ñݳª»áµÄ4ÃûÄÐÉúºÍ3ÃûÅ®ÉúÖгéÈ¡Á½ÈË£¬ÇóÇ¡ºÃ³éµ½Ò»ÃûÄÐÉúºÍÒ»ÃûÅ®ÉúµÄ¸ÅÂÊ£®
  ¹Û¿´ Î´¹Û¿´ ºÏ¼Æ
 Å®Éú   
 ÄÐÉú   
 ºÏ¼Æ   50
P£¨K2¡Ýk0£©0.0250.0100.005 0.001
k05.0246.6357.879 10.828
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸