精英家教网 > 高中数学 > 题目详情
19.已知集合A={x|1<2x≤16},B={x|x<a},若A∩B=A,则实数a的取值范围是(  )
A.a>4B.a≥4C.a≥0D.a>0

分析 由A∩B=A得A⊆B,可解得结论.

解答 解:A={x|1<2x≤16}={x|0<x≤4},
∵A∩B=A,∴A⊆B,
∵B={x|x<a},
∴a>4,
故选A.

点评 本题考查了集合的化简与运算的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)是定义在R上的奇函数,且在区间(0,+∞)上单调递增,若实数a满足$f({e^{|{\frac{1}{2}a-1}|}})+f(-\sqrt{e})<0$,则a的取值范围是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在直三棱柱ABC-A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则三棱锥A1-MBC1的体积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.通过对某城市一天内单次租用共享自行车的时间50分钟到100钟的n人进行统计,按照租车时间[50,50),[60,70),[70,80),[80,90),[90,100)分组做出频率分布直方图如图1,并作出租用时间和茎叶图如图2(图中仅列出了时间在[50,60),[90,100)的数据).

(1)求n的频率分布直方图中的x,y
(2)从租用时间在80分钟以上(含80分钟)的人数中随机抽取4人,设随机变量X表示所抽取的4人租用时间在[80,90)内的人数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+2|+|x-3|
(1)证明:f(x)≥f(0);
(2)若?x∈R,不等式3f(x)>f(a+1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(x+φ)-2cos(x+φ)(0<φ<π)的图象关于直线x=π对称,则cos2φ=(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照[0,2],(2,4],…,(14,16]分成8组,制成了如图1所示的频率分布直方图.

(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.
( i)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;
(ⅱ)试估计全市居民用水价格的期望(精确到0.01);
(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费y(元)与月份x的散点图,其拟合的线性回归方程是$\widehaty=2x+33$.若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a,b,c为正实数,且a3+b3+c3=a2b2c2,求证:a+b+c≥3$\root{3}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,F1,F2为左,右焦点,以F1,F2为直径的圆与椭圆在第一、三象限的交点分别为A、B,若直线AB与直线x+$\sqrt{3}$y-7=0互相垂直,则椭圆的离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\sqrt{3}$-1D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

同步练习册答案