精英家教网 > 高中数学 > 题目详情
4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率等于2,其两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,${S_{△AOB}}=\frac{{\sqrt{3}}}{4}$,则p=1.

分析 求出A,B的坐标,代入三角形面积公式可得b与a,b的关系,根据离心率公式得出a,b的关系,从而可求出p的值.

解答 解:双曲线的渐近线方程为y=±$\frac{b}{a}x$,抛物线的准线方程为x=-$\frac{p}{2}$,
∴A(-$\frac{p}{2}$,$\frac{bp}{2a}$),B(-$\frac{p}{2}$,-$\frac{bp}{2a}$),
∴S△AOB=$\frac{1}{2}×\frac{p}{2}×\frac{bp}{a}$=$\frac{\sqrt{3}}{4}$,∴bp2=$\sqrt{3}$a,即p2=$\frac{\sqrt{3}a}{b}$.
∵e=$\frac{c}{a}=\frac{\sqrt{{a}^{2}+{b}^{2}}}{a}=2$,∴b2=3a2,即$\frac{a}{b}=\frac{\sqrt{3}}{3}$,
∴p2=$\frac{\sqrt{3}a}{b}$=1.
∴p=1.
故答案为1.

点评 本题考查了双曲线与抛物线的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+2|+|x-3|
(1)证明:f(x)≥f(0);
(2)若?x∈R,不等式3f(x)>f(a+1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在R上且周期为4的偶函数,当x∈[2,4]时,$f(x)=|{{{log}_4}({x-\frac{3}{2}})}|$,则$f({\frac{1}{2}})$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(x-3)ex+ax,a∈R.
(Ⅰ)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a∈[0,e)时,设函数f(x)在(1,+∞)上的最小值为g(a),求函数g(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱体的高为(  )
A.$2\sqrt{6}$B.$2\sqrt{7}$C.$4\sqrt{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,F1,F2为左,右焦点,以F1,F2为直径的圆与椭圆在第一、三象限的交点分别为A、B,若直线AB与直线x+$\sqrt{3}$y-7=0互相垂直,则椭圆的离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\sqrt{3}$-1D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系xOy中,已知点A(0,-2),点B(1,-1),P为圆x2+y2=2上一动点,则$\frac{PB}{PA}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{x,x≥a}\\{{x}^{3}-3x,x<a}\end{array}\right.$若函数g(x)=2f(x)-ax恰有2个不同的零点,则实数a的取值范围是(-$\frac{3}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x∈N|3-2x>0},B={x|x2≤4},则A∩B=(  )
A.{x|-2≤x<1}B.{x|x≤2}C.{0,1}D.{1,2}

查看答案和解析>>

同步练习册答案