精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{\begin{array}{l}{x,x≥a}\\{{x}^{3}-3x,x<a}\end{array}\right.$若函数g(x)=2f(x)-ax恰有2个不同的零点,则实数a的取值范围是(-$\frac{3}{2}$,2).

分析 求出g(x)的解析式,计算g(x)的零点,讨论g(x)在区间[a,+∞)上的零点个数,得出g(x)在(-∞,a)上的零点个数,列出不等式解出a的范围.

解答 解:g(x)=$\left\{\begin{array}{l}{(2-a)x,x≥a}\\{2{x}^{3}-(6+a)x,x<a}\end{array}\right.$,
显然,当a=2时,g(x)有无穷多个零点,不符合题意;
当x≥a时,令g(x)x=0得x=0,
当x<a时,令g(x)=0得x=0或x2=$\frac{6+a}{2}$,
(1)若a>0且a≠2,则g(x)在[a,+∞)上无零点,在(-∞,a)上存在零点x=0和x=-$\sqrt{\frac{6+a}{2}}$,
∴$\sqrt{\frac{6+a}{2}}$≥a,解得0<a<2,
(2)若a=0,则g(x)在[0,+∞)上存在零点x=0,在(-∞,0)上存在零点x=-$\sqrt{\frac{6}{2}}$,
符合题意;
(3)若a<0,则g(x)在[a,+∞)上存在零点x=0,
∴g(x)在(-∞,a)上只有1个零点,∵0∉(-∞,a),∴g(x)在(-∞,a)上的零点为x=-$\sqrt{\frac{6+a}{2}}$,
∴-$\sqrt{\frac{6+a}{2}}$<a,解得-$\frac{3}{2}$<a<0.
综上,a的取值范围是(-$\frac{3}{2}$,2).
故答案为(-$\frac{3}{2}$,2).

点评 本题考查了函数零点的个数判断,分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.如图,已知正方形ABCD的边长为2,BC平行于x轴,顶点A,B和C分别在函数y1=3logax,y2=2logax和y3=logax(a>1)的图象上,则实数a的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率等于2,其两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,${S_{△AOB}}=\frac{{\sqrt{3}}}{4}$,则p=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C的对边分别为a,b,c,已知∠B=30°,△ABC的面积为$\frac{3}{2}$,且sinA+sinC=2sinB,则b的值为(  )
A.4+2$\sqrt{3}$B.4-2$\sqrt{3}$C.$\sqrt{3}$-1D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于数列{an},若存在正整数T,对于任意正整数n都有an+T=an成立,则称数列{an}是以T为周期的周期数列.设b1=m(0<m<1),对任意正整数n都有${b_{n+1}}=\left\{{\begin{array}{l}{{b_n}-1\;\;({b_n}>1),\;\;\;}\\{\frac{1}{b_n}\;\;\;(0<{b_n}≤1)}\end{array}}\right.$若数列{bn}是以5为周期的周期数列,则m的值可以是$\sqrt{2}$-1.(只要求填写满足条件的一个m值即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知AB为圆O的一条弦,点P为弧$\widehat{AB}$的中点,过点P任作两条弦PC,PD分别交AB于点E,F
求证:PE•PC=PF•PD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设全集U是实数集R,已知集合A={x|x2>2x},B={x|log2(x-1)≤0},则(∁UA)∩B=(  )
A.{x|1<x<2}B.{x|1≤x<2}C.{x|1<x≤2}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某科研小组研究发现:一棵水蜜桃树的产量ω(单位:千克)与肥料费用x(单位:百元)满足如下关系:ω=4-$\frac{3}{x+1}$,且投入的肥料费用不超过5百元.此外,还需要投入其他成本2x(如是非的人工费用等)百元.已知这种水蜜桃的市场价格为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为L(x)(单位:百元).
(1)求利润函数L(x)的关系式,并写出定义域;
(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,a1=$\frac{3}{4}$,Sn=Sn-1+an-1+$\frac{1}{2}$(n∈N*且n≥2),数列{bn}满足:b1=-$\frac{37}{4}$,且3bn-bn-1=n+1(n∈N*且n≥2).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{bn-an}为等比数列;
(Ⅲ)求数列{bn}的前n项和的最小值.

查看答案和解析>>

同步练习册答案