2£®¶ÔÓÚÊýÁÐ{an}£¬Èô´æÔÚÕýÕûÊýT£¬¶ÔÓÚÈÎÒâÕýÕûÊýn¶¼ÓÐan+T=an³ÉÁ¢£¬Ôò³ÆÊýÁÐ{an}ÊÇÒÔTΪÖÜÆÚµÄÖÜÆÚÊýÁУ®Éèb1=m£¨0£¼m£¼1£©£¬¶ÔÈÎÒâÕýÕûÊýn¶¼ÓÐ${b_{n+1}}=\left\{{\begin{array}{l}{{b_n}-1\;\;£¨{b_n}£¾1£©£¬\;\;\;}\\{\frac{1}{b_n}\;\;\;£¨0£¼{b_n}¡Ü1£©}\end{array}}\right.$ÈôÊýÁÐ{bn}ÊÇÒÔ5ΪÖÜÆÚµÄÖÜÆÚÊýÁУ¬ÔòmµÄÖµ¿ÉÒÔÊÇ$\sqrt{2}$-1£®£¨Ö»ÒªÇóÌîдÂú×ãÌõ¼þµÄÒ»¸ömÖµ¼´¿É£©

·ÖÎö È¡m=$\sqrt{2}$-1=b1£¬¾­¹ýÑéÖ¤Âú×ãbn+5=bn£®

½â´ð ½â£ºÈ¡m=$\sqrt{2}$-1=b1£¬Ôòb2=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}$+1£¬b3=$\sqrt{2}$£¬b4=$\sqrt{2}$-1£¬b5=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}$+1£¬b6=$\frac{1}{\sqrt{2}+1}$=$\sqrt{2}$-1£¬Âú×ãbn+5=bn£®
¹Ê´ð°¸Îª£º$\sqrt{2}$-1£®

µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆ¹ØÏµ¡¢ÊýÁеÄÖÜÆÚÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÏÖÓÐÈýÕÅʶ×Ö¿¨Æ¬£¬·Ö±ðдÓС°ÖС±¡¢¡°¹ú¡±¡¢¡°ÃΡ±ÕâÈý¸ö×Ö£®½«ÕâÈýÕÅ¿¨Æ¬Ëæ»úÅÅÐò£¬ÔòÄÜ×é³É¡°ÖйúÃΡ±µÄ¸ÅÂÊÊÇ$\frac{1}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈçͼΪÖйú´«Í³ÖÇÁ¦Íæ¾ß³°àËø£¬ÆðÔ´ÓڹŴúºº×彨ÖþÖÐÊ×´´µÄé¾Ã®½á¹¹£¬ÕâÖÖÈýάµÄÆ´²åÆ÷¾ßÄÚ²¿µÄ°¼Í¹²¿·Ö£¨¼´é¾Ã®½á¹¹£©ÄöºÏ£¬Íâ¹Û¿´ÊÇÑÏË¿ºÏ·ìµÄÊ®×ÖÁ¢·½Ì壬ÆäÉÏÏ¡¢×óÓÒ¡¢Ç°ºóÍêÈ«¶Ô³Æ£¬Áù¸ùÍêÈ«ÏàͬµÄÕýËÄÀâÖù·Ö³ÉÈý×飬¾­90¡ãé¾Ã®ÆðÀ´£®ÏÖÓÐһ³°àËøµÄÕýËÄÀâÖùµÄµ×ÃæÕý·½Ðα߳¤Îª1£¬Óû½«Æä·ÅÈëÇòÐÎÈÝÆ÷ÄÚ£¨ÈÝÆ÷±ÚµÄºñ¶ÈºöÂÔ²»¼Æ£©£¬ÈôÇòÐÎÈÝÆ÷±íÃæ»ýµÄ×îСֵΪ30¦Ð£¬ÔòÕýËÄÀâÖùÌåµÄ¸ßΪ£¨¡¡¡¡£©
A£®$2\sqrt{6}$B£®$2\sqrt{7}$C£®$4\sqrt{2}$D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãA£¨0£¬-2£©£¬µãB£¨1£¬-1£©£¬PΪԲx2+y2=2ÉÏÒ»¶¯µã£¬Ôò$\frac{PB}{PA}$µÄ×î´óÖµÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=2cos22x-2£¬¸ø³öÏÂÁÐÃüÌ⣺
¢Ùº¯Êýf£¨x£©µÄÖµÓòΪ[-2£¬0]£»
¢Úx=$\frac{¦Ð}{8}$Ϊº¯Êýf£¨x£©µÄÒ»Ìõ¶Ô³ÆÖ᣻
¢Û?¦Â¡ÊR£¬f£¨x+¦Â£©ÎªÆæº¯Êý£»
¢Ü?¦Á¡Ê£¨0£¬$\frac{3¦Ð}{4}$£©£¬f£¨x£©=f£¨x+2¦Á£©¶Ôx¡ÊRºã³ÉÁ¢£¬
ÆäÖеÄÕæÃüÌâÓУ¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Û¢ÜC£®¢Ú¢ÛD£®¢Ù¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{x£¬x¡Ýa}\\{{x}^{3}-3x£¬x£¼a}\end{array}\right.$Èôº¯Êýg£¨x£©=2f£¨x£©-axÇ¡ÓÐ2¸ö²»Í¬µÄÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨-$\frac{3}{2}$£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf0£¨x£©=$\frac{cx+d}{ax+b}$£¨a¡Ù0£¬ac-bd¡Ù0£©£¬Éèfn£¨x£©Îªfn-1£¨x£©µÄµ¼Êý£¬n¡ÊN*£®
£¨1£©Çóf1£¨x£©£¬f2£¨x£©
£¨2£©²ÂÏëfn£¨x£©µÄ±í´ïʽ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÖ±Ïßl£ºmx+y-2m-1=0£¬Ô²C£ºx2+y2-2x-4y=0£¬µ±Ö±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤×î¶Ìʱ£¬ÊµÊým=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®º¯Êý$f£¨x£©=\frac{{1+{e^x}}}{{1-{e^x}}}$£¨ÆäÖÐeÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©µÄ´óÖÂͼÏóΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸