10£®ÒÑÖª{an}Êǹ«²îΪdµÄµÈ²îÊýÁУ¬{bn} Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬q¡Ù¡À1£¬ÕýÕûÊý×éE=£¨m£¬p£¬r£©£¨m£¼p£¼r£©
£¨1£©Èôa1+b2=a2+b3=a3+b1£¬ÇóqµÄÖµ£»
£¨2£©ÈôÊý×éEÖеÄÈý¸öÊý¹¹³É¹«²î´óÓÚ1µÄµÈ²îÊýÁУ¬ÇÒam+bp=ap+br=ar+bm£¬ÇóqµÄ×î´óÖµ£®
£¨3£©Èôbn=£¨-$\frac{1}{2}$£©n-1£¬am+bm=ap+bp=ar+br=0£¬ÊÔд³öÂú×ãÌõ¼þµÄÒ»¸öÊý×éEºÍ¶ÔÓ¦µÄͨÏʽan£®£¨×¢£º±¾Ð¡Îʲ»±ØÐ´³ö½â´ð¹ý³Ì£©

·ÖÎö £¨1£©ÓÉa1+b2=a2+b3=a3+b1£¬ÀûÓõȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¿ÉµÃ£ºa1+b1q=${a}_{1}+d+{b}_{1}{q}^{2}$=a1+2d+b1£¬»¯¼ò½â³ö¼´¿ÉµÃ³ö£®
£¨2£©am+bp=ap+br=ar+bm£¬¼´ap-am=bp-br£¬¿ÉµÃ£¨p-m£©d=bm£¨qp-m-qr-m£©£¬Í¬Àí¿ÉµÃ£º£¨r-p£©d=bm£¨qr-m-1£©£®ÓÉm£¬p£¬r³ÉµÈ²îÊýÁУ¬¿ÉµÃp-m=r-p=$\frac{1}{2}$£¨r-m£©£¬¼Çqp-m=t£¬½âµÃt=$\frac{1}{2}$£®¼´qp-m=$\frac{1}{2}$£¬ÓÉ-1£¼q£¼0£¬¼Çp-m=¦Á£¬¦ÁÎªÆæÊý£¬Óɹ«²î´óÓÚ1£¬¦Á¡Ý3£®¿ÉµÃ|q|=$£¨\frac{1}{2}£©^{\frac{1}{¦Á}}$¡Ý$£¨\frac{1}{2}£©^{\frac{1}{3}}$£¬¼´q$¡Ü-£¨\frac{1}{2}£©^{\frac{1}{3}}$£¬¼´¿ÉµÃ³ö£®
£¨3£©Âú×ãÌâÒâµÄÊý×éΪE=£¨m£¬m+2£¬m+3£©£¬´ËʱͨÏʽΪ£ºan=$£¨-\frac{1}{2}£©^{m-1}$$£¨\frac{3}{8}n-\frac{3}{8}m-1£©$£¬m¡ÊN*£®

½â´ð ½â£º£¨1£©¡ßa1+b2=a2+b3=a3+b1£¬¡àa1+b1q=${a}_{1}+d+{b}_{1}{q}^{2}$=a1+2d+b1£¬»¯Îª£º2q2-q-1=0£¬q¡Ù¡À1£®
½âµÃq=-$\frac{1}{2}$£®
£¨2£©am+bp=ap+br=ar+bm£¬¼´ap-am=bp-br£¬¡à£¨p-m£©d=bm£¨qp-m-qr-m£©£¬
ͬÀí¿ÉµÃ£º£¨r-p£©d=bm£¨qr-m-1£©£®
¡ßm£¬p£¬r³ÉµÈ²îÊýÁУ¬¡àp-m=r-p=$\frac{1}{2}$£¨r-m£©£¬¼Çqp-m=t£¬Ôò2t2-t-1=0£¬
¡ßq¡Ù¡À1£¬t¡Ù¡À1£¬½âµÃt=$\frac{1}{2}$£®¼´qp-m=$\frac{1}{2}$£¬¡à-1£¼q£¼0£¬
¼Çp-m=¦Á£¬¦ÁÎªÆæÊý£¬Óɹ«²î´óÓÚ1£¬¡à¦Á¡Ý3£®
¡à|q|=$£¨\frac{1}{2}£©^{\frac{1}{¦Á}}$¡Ý$£¨\frac{1}{2}£©^{\frac{1}{3}}$£¬¼´q$¡Ü-£¨\frac{1}{2}£©^{\frac{1}{3}}$£¬
µ±¦Á=3ʱ£¬qÈ¡µÃ×î´óֵΪ-$£¨\frac{1}{2}£©^{\frac{1}{3}}$£®
£¨3£©Âú×ãÌâÒâµÄÊý×éΪE=£¨m£¬m+2£¬m+3£©£¬´ËʱͨÏʽΪ£ºan=$£¨-\frac{1}{2}£©^{m-1}$$£¨\frac{3}{8}n-\frac{3}{8}m-1£©$£¬m¡ÊN*£®
ÀýÈçE=£¨1£¬3£¬4£©£¬an=$\frac{3}{8}n-\frac{11}{8}$£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼°ÆäÐÔÖÊ¡¢²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÁ½¸öÎÞÇîÊýÁÐ{an}ºÍ{bn}µÄǰnÏîºÍ·Ö±ðΪSn£¬Tn£¬a1=1£¬S2=4£¬¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐ3Sn+1=2Sn+Sn+2+an£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èô{bn}ΪµÈ²îÊýÁУ¬¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐSn£¾Tn£®Ö¤Ã÷£ºan£¾bn£»
£¨3£©Èô{bn}ΪµÈ±ÈÊýÁУ¬b1=a1£¬b2=a2£¬ÇóÂú×ã$\frac{{a}_{n}+2{T}_{n}}{{b}_{n}+2{S}_{n}}$=ak£¨k¡ÊN*£©µÄnÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÈôÇúÏßC£ºy=x2+aln£¨x+1£©-2ÉÏбÂÊ×îСµÄÒ»ÌõÇÐÏßÓëÖ±Ïßx+2y-3=0´¹Ö±£¬ÔòʵÊýa=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®º¯Êýf£¨x£©=lnx+$\frac{1}{2}$x2+ax£¨a¡ÊR£©£¬g£¨x£©=ex+$\frac{3}{2}$x2£®
£¨1£©ÌÖÂÛf£¨x£©µÄ¼«ÖµµãµÄ¸öÊý£»
£¨2£©Èô?x£¾0£¬f£¨x£©¡Üg£¨x£©£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÈôÖ±Ïßy=2x+bΪÇúÏßy=ex+xµÄÒ»ÌõÇÐÏߣ¬ÔòʵÊýbµÄÖµÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬DΪÏß¶ÎABÉϵĵ㣬ÇÒAB=3AD£¬AC=AD£¬CB=3CD£¬Ôò$\frac{sin2B}{sinA}$=$\frac{7}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬Ö±Ïßl£ºx+y-2=0£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC1£º¦Ñ=1£¬½«ÇúÏßC1ÉÏËùÓеãµÄºá×ø±êÉ쳤ΪԭÀ´µÄ$2\sqrt{2}$±¶£¬×Ý×ø±êÉ쳤ΪԭÀ´µÄ2±¶µÃµ½ÇúÏßC2£¬ÓÖÖ±ÏßlÓëÇúÏßC2½»ÓÚA£¬BÁ½µã£®
£¨1£©ÇóÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©É趨µãP£¨2£¬0£©£¬Çó$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an+1=$\frac{{¦Ë{a_n}^2+¦Ì{a_n}+4}}{{{a_n}+2}}$£¬ÆäÖÐn¡ÊN*£¬¦Ë£¬¦ÌΪ·ÇÁã³£Êý£®
£¨1£©Èô¦Ë=3£¬¦Ì=8£¬ÇóÖ¤£º{an+1}ΪµÈ±ÈÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{an}Êǹ«²î²»µÈÓÚÁãµÄµÈ²îÊýÁУ®
¢ÙÇóʵÊý¦Ë£¬¦ÌµÄÖµ£»
¢ÚÊýÁÐ{an}µÄǰnÏîºÍSn¹¹³ÉÊýÁÐ{Sn}£¬´Ó{Sn}ÖÐÈ¡²»Í¬µÄËÄÏî°´´ÓСµ½´óµÄ˳Ðò×é³ÉËÄÏî×ÓÊýÁУ®ÊÔÎÊ£ºÊÇ·ñ´æÔÚÊ×ÏîΪS1µÄËÄÏî×ÓÊýÁУ¬Ê¹µÃ¸Ã×ÓÊýÁÐÖеãËùÓÐÏîÖ®ºÍÇ¡ºÃΪ2017£¿Èô´æÔÚ£¬Çó³öËùÓÐÂú×ãÌõ¼þµÄËÄÏî×ÓÊýÁУ»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÉèiΪÐéÊýµ¥Î»£¬Èô¸´Êý$\frac{z}{-i}$ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãΪ£¨1£¬2£©£¬Ôòz=£¨¡¡¡¡£©
A£®-2+iB£®2-iC£®-1+2iD£®1-2i

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸