精英家教网 > 高中数学 > 题目详情
14.已知向量$\overrightarrow m=({\sqrt{3}cosx,-1}),\overrightarrow n=({sinx,{{cos}^2}x})$.
(1)当x=$\frac{π}{3}$时,求$\overrightarrow m•\overrightarrow n$的值;
(2)若$x∈[{0,\frac{π}{4}}]$,且$\overrightarrow m•\overrightarrow n=\frac{{\sqrt{3}}}{3}-\frac{1}{2}$,求cos2x的值.

分析 (1)求出向量的坐标,再计算数量积;
(2)化简$\overrightarrow{m}•\overrightarrow{n}$,得出cos(2x-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,再利用和角公式计算cos2x.

解答 解:(1)当x=$\frac{π}{3}$时,$\overrightarrow{m}$=($\frac{\sqrt{3}}{2}$,-1),$\overrightarrow{n}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{4}$),
∴$\overrightarrow{m}•\overrightarrow{n}$=$\frac{3}{4}$-$\frac{1}{4}$=$\frac{1}{2}$.
(2)$\overrightarrow{m}•\overrightarrow{n}$=$\sqrt{3}$sinxcosx-cos2x=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x-$\frac{1}{2}$=sin(2x-$\frac{π}{6}$)-$\frac{1}{2}$,
若$\overrightarrow{m}•\overrightarrow{n}$=$\frac{\sqrt{3}}{3}$-$\frac{1}{2}$,则sin(2x-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,
∵$x∈[{0,\frac{π}{4}}]$,∴2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{π}{3}$],∴cos(2x-$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$.
∴cos2x=cos(2x-$\frac{π}{6}$+$\frac{π}{6}$)=cos(2x-$\frac{π}{6}$)cos$\frac{π}{6}$-sin(2x-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{\sqrt{6}}{3}×\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{3}×\frac{1}{2}$=$\frac{3\sqrt{2}-\sqrt{3}}{6}$.

点评 本题考查了平面向量的数量积运算,三角函数恒等变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在底边为等边三角形的斜三棱柱ABC-A1B1C1中,AA1=$\sqrt{3}$AB,四边形B1C1CB为矩形,过A1C做与直线BC1平行的平面A1CD交AB于点D.
(Ⅰ)证明:CD⊥AB;
(Ⅱ)若AA1与底面A1B1C1所成角为60°,求二面角B-A1C-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若直线y=2x+b为曲线y=ex+x的一条切线,则实数b的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xoy中,直线l:x+y-2=0,以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1:ρ=1,将曲线C1上所有点的横坐标伸长为原来的$2\sqrt{2}$倍,纵坐标伸长为原来的2倍得到曲线C2,又直线l与曲线C2交于A,B两点.
(1)求曲线C2的直角坐标方程;
(2)设定点P(2,0),求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直四棱柱底面是边长为2的菱形,侧面对角线的长为$2\sqrt{3}$,则该直四棱柱的侧面积为16$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=1,an+1=$\frac{{λ{a_n}^2+μ{a_n}+4}}{{{a_n}+2}}$,其中n∈N*,λ,μ为非零常数.
(1)若λ=3,μ=8,求证:{an+1}为等比数列,并求数列{an}的通项公式;
(2)若数列{an}是公差不等于零的等差数列.
①求实数λ,μ的值;
②数列{an}的前n项和Sn构成数列{Sn},从{Sn}中取不同的四项按从小到大的顺序组成四项子数列.试问:是否存在首项为S1的四项子数列,使得该子数列中点所有项之和恰好为2017?若存在,求出所有满足条件的四项子数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图(1)在平面六边形ABCDEF,四边形ABCD是矩形,且AB=4,BC=2,AE=DE=$\sqrt{2}$,BF=CF=$\sqrt{5}$,点M,N分别是AD,BC的中点,分别沿直线AD,BC将△DEF,△BCF翻折成如图(2)的空间几何体ABCDEF.
(1)利用下面的结论1或结论2,证明:E、F、M、N四点共面;
结论1:过空间一点作已知直线的垂面,有且只有一个;
结论2:过平面内一条直线作该平面的垂面,有且只有一个.
(2)若二面角E-AD-B和二面角F-BC-A都是60°,求二面角A-BE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,ABCD是以O为圆心、半径为2的圆的内接正方形,EFGH是正方形ABCD的内接正方形,且E、F、G、H分别为AB、BC、CD、DA的中点.将一枚针随机掷到圆O内,用M表示事件“针落在正方形ABCD内”,N表示事件“针落在正方形EFGH内”,则P(N|M)=(  )
A.$\frac{1}{π}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正四棱锥P-ABCD中,PA=AB=2,则该四棱锥外接球的表面积为8π.

查看答案和解析>>

同步练习册答案