精英家教网 > 高中数学 > 题目详情
5.在log23,2-3,cosπ这三个数中最大的数是log23.

分析 利用指数函数对数函数、三角函数的单调性值域即可得出.

解答 解:log23>1,2-3∈(0,1),cosπ=-1这三个数中最大的数是log23.
故答案为:log23.

点评 本题考查了指数函数对数函数、三角函数的单调性值域,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=sin(\frac{π}{3}-ωx)(ω>0)$向左平移半个周期得g(x)的图象,若g(x)在[0,π]上的值域为$[-\frac{{\sqrt{3}}}{2},1]$,则ω的取值范围是(  )
A.$[\frac{1}{6},1]$B.$[\frac{2}{3},\frac{3}{2}]$C.$[\frac{1}{3},\frac{7}{6}]$D.$[\frac{5}{6},\frac{5}{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知Sn为等差数列{an}的前n项和.若S9=18,则a3+a5+a7=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选择意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果整理成条形图如下.图中,已知课程A,B,C,D,E为人文类课程,课程F,G,H为自然科学类课程.为进一步研究学生选课意向,结合图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组M”).

(Ⅰ)在“组M”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)为参加某地举办的自然科学营活动,从“组M”所有选择自然科学类课程的同学中随机抽取4名同学前往,其中选择课程F或课程H的同学参加本次活动,费用为每人1500元,选择课程G的同学参加,费用为每人2000元.
(ⅰ)设随机变量X表示选出的4名同学中选择课程G的人数,求随机变量X的分布列;
(ⅱ)设随机变量Y表示选出的4名同学参加科学营的费用总和,求随机变量Y的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(3,-2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=(  )
A.-3B.$-\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是各项为正数的等差数列,Sn为其前n项和,且4Sn=(an+1)2
(Ⅰ)求a1,a2的值及{an}的通项公式;
(Ⅱ)求数列$\{{S_n}-\frac{7}{2}{a_n}\}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在空间直角坐标系O-xyz中,四面体A-BCD在xOy,yOz,zOx坐标平面上的一组正投影图形如图所示(坐标轴用细虚线表示).该四面体的体积是$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,若(1-i)(a+i)=3-bi(a,b∈R),则a+b等于(  )
A.3B.1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=5,AB=6,M是CC1中点,CC1=8.
(1)求证:平面AB1M⊥平面A1ABB1
(2)求平面AB1M与平面ABC所成二面角的正弦值.

查看答案和解析>>

同步练习册答案