分析 设AP=x,用x表示出PC,PD,使用余弦定理得出cos∠CPD关于x的函数式,根据函数值的符号判断∠CPD的范围.
解答 解:设AP=x,则BP=20$\sqrt{2}$-x,(0$≤x≤10\sqrt{2}$).
∴PD=$\sqrt{{x}^{2}+100}$,PC=$\sqrt{(20\sqrt{2}-x)^{2}+400}$=$\sqrt{{x}^{2}-40\sqrt{2}x+1200}$,![]()
CD=$\sqrt{(20\sqrt{2})^{2}+(20-10)^{2}}$=30,
在△PCD中,由余弦定理得cos∠CPD=$\frac{P{C}^{2}+P{D}^{2}-C{D}^{2}}{2PC•PD}$
=$\frac{2{x}^{2}-40\sqrt{2}x+400}{2\sqrt{{x}^{2}+100}\sqrt{{x}^{2}-40\sqrt{2}x+1200}}$=$\frac{(x-10\sqrt{2})^{2}}{\sqrt{{x}^{2}+100}\sqrt{{x}^{2}-40\sqrt{2}x+1200}}$≥0.
∴当x=10$\sqrt{2}$时,cos∠CPD取得最小值0,此时∠CPD=90°.
当x≠10$\sqrt{2}$时,cos∠CPD>0,此时∠CPD<90°,
故当x=10$\sqrt{2}$时,∠CPD取得最大值90°.
故答案为10$\sqrt{2}$.
点评 本题考查了余弦定理,三角函数的性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a3>a2 | B. | a1+a2>0 | C. | $\{{a_n}^2\}$是递增数列 | D. | Sn存在最小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com