精英家教网 > 高中数学 > 题目详情
10.已知3sin2θ=4tanθ,且θ≠kπ(k∈Z),则cos2θ等于(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{1}{4}$D.$\frac{1}{4}$

分析 由已知利用倍角公式,同角三角函数基本关系式化简可求$\frac{6sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=4tanθ,由已知可得tanθ≠0,进而可求tan2θ=$\frac{1}{2}$,利用倍角公式,同角三角函数基本关系式可求cos2θ的值.

解答 解:∵3sin2θ=4tanθ,
∴$\frac{6sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{6tanθ}{1+ta{n}^{2}θ}$=4tanθ,
∵θ≠kπ(k∈Z),tanθ≠0,
∴$\frac{3}{1+ta{n}^{2}θ}$=2,解得:tan2θ=$\frac{1}{2}$,
∴cos2θ=$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$=$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$.
故选:B.

点评 本题主要考查了倍角公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\frac{1}{2}$sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(x)的单调递增区间为(  )
A.$(-\frac{1}{24}+2kπ,\frac{5}{24}+2kπ)$,(k∈Z)B.$(-\frac{1}{12}+\frac{k}{2},\frac{5}{12}+\frac{k}{2})$,(k∈Z)
C.$(-\frac{1}{12}+2kπ,\frac{1}{3}+2kπ)$,(k∈Z)D.$(-\frac{1}{24}+\frac{k}{2},\frac{5}{24}+\frac{k}{2})$,(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图所示的程序框图,若输入a=-7,d=3,则输出的S为(  )
A.S=-12B.S=-11C.S=-10D.S=-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)满足2x2f(x)+x3f'(x)=ex,f(2)=$\frac{e^2}{8}$,则x∈[2,+∞)时,f(x)的最小值为(  )
A.$\frac{e^2}{2}$B.$\frac{{3{e^2}}}{2}$C.$\frac{e^2}{4}$D.$\frac{e^2}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由约束条件$\left\{\begin{array}{l}{x≥0,y≥0}\\{y≤-3x+3}\\{y≤kx+1}\end{array}\right.$,确定的可行域D能被半径为$\frac{\sqrt{2}}{2}$的圆面完全覆盖,则实数k的取值范围是$(-∞,\frac{1}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={0,1,2,3,4},B={x|(x+5)(x-m)<0},m∈Z,若A∩B有三个元素,则m的值为(  )
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将函数$y=sin(2x-\frac{π}{6})$的图象向右平移m(m>0)个单位长度,所得函数图象关于y轴对称,则m的最小值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示的矩形是长为100码,宽为80码的足球比赛场地.其中PH是足球场地边线所在的直线,AB是球门,且AB=8码.从理论研究及经验表明:当足球运动员带球沿着边线奔跑时,当运动员(运动员看做点P)所对AB的张角越大时,踢球进球的可能性就越大.
(1)若PH=20,求tan∠APB的值;
(2)如图,当某运动员P沿着边线带球行进时,何时(距离AB所在直线的距离)开始射门进球的可能性会最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若平面PAD⊥平面ABCD,求证:AF⊥EF.

查看答案和解析>>

同步练习册答案