| A. | $\frac{e^2}{2}$ | B. | $\frac{{3{e^2}}}{2}$ | C. | $\frac{e^2}{4}$ | D. | $\frac{e^2}{8}$ |
分析 由题意可知:f'(x)=$\frac{{e}^{x}-2{x}^{2}f(x)}{{x}^{3}}$,且当x=2时,f(2)=$\frac{e^2}{8}$,构造辅助函数,求导,由g′(x)≥0在x∈[2,+∞)恒成立,则g(x)在x=2处取最小值,即可求得f(x)在[2,+∞)单调递增,即可求得f(x)的最小值.
解答 解:由2x2f(x)+x3f'(x)=ex,
当x>0时,
故此等式可化为:f'(x)=$\frac{{e}^{x}-2{x}^{2}f(x)}{{x}^{3}}$,且当x=2时,f(2)=$\frac{e^2}{8}$,
f'(x)=$\frac{{e}^{2}-8×f(2)}{{x}^{3}}$=0,
令g(x)=e2-2x2f(x),g(2)=0,
求导g′(x)=e2-2[x2f′(x)+2xf(x)]=e2-$\frac{2{e}^{x}}{x}$=$\frac{{e}^{x}}{x}$(x-2),
当x∈[2,+∞)时,g′(x)>0,
则g(x)在x∈[2,+∞)上单调递增,
g(z)的最小值为g(2)=0,
则f'(x)≥0恒成立,
∴f(x)的最小值f(2)=$\frac{e^2}{8}$,
故选D.
点评 本题考查导数的综合应用,考查导数与函数单调性的关系,考查构造法求函数的单调性及最值,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{5}-4$ | B. | 2 | C. | 4 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{6}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{30}}{6}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $-\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com