| A. | $2\sqrt{5}-4$ | B. | 2 | C. | 4 | D. | $\frac{1}{2}$ |
分析 分别设出直线l与两个函数所对应曲线的切点,求出切线方程,由两切线系数相等列式求出切点横坐标,则答案可求.
解答 解:由g(x)=-1nx,得g'(x)=-$\frac{1}{x}$,
设直线l与f(x)的切点为(${x}_{1},{{x}_{1}}^{2}$),则f′(x1)=2x1,
∴直线l的方程为y-${{x}_{1}}^{2}=2{x}_{1}(x-{x}_{1})$,即$y=2{x}_{1}x-{{x}_{1}}^{2}$;
再设l与g'(x)的切点为(${x}_{2},-\frac{1}{{x}_{2}}$),则$g″({x}_{2})=\frac{1}{{{x}_{2}}^{2}}$,
∴直线l的方程为$y+\frac{1}{{x}_{2}}=\frac{1}{{{x}_{2}}^{2}}(x-{x}_{2})$,即$y=\frac{1}{{{x}_{2}}^{2}}x-\frac{2}{{x}_{2}}$.
∴$\left\{\begin{array}{l}{2{x}_{1}=\frac{1}{{{x}_{2}}^{2}}}\\{{{x}_{1}}^{2}=\frac{2}{{x}_{2}}}\end{array}\right.$,解得x1=2.
∴直线l的斜率为2x1=4.
故选:C.
点评 本题考查利用导数研究过去线上某点处的切线方程,函数在曲线上某点处的导数,就是函数在该点处的导数值,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$钱 | B. | $\frac{5}{6}$钱 | C. | 1钱 | D. | $\frac{7}{6}$钱 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 12 | C. | 8 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-\frac{1}{24}+2kπ,\frac{5}{24}+2kπ)$,(k∈Z) | B. | $(-\frac{1}{12}+\frac{k}{2},\frac{5}{12}+\frac{k}{2})$,(k∈Z) | ||
| C. | $(-\frac{1}{12}+2kπ,\frac{1}{3}+2kπ)$,(k∈Z) | D. | $(-\frac{1}{24}+\frac{k}{2},\frac{5}{24}+\frac{k}{2})$,(k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{e^2}{2}$ | B. | $\frac{{3{e^2}}}{2}$ | C. | $\frac{e^2}{4}$ | D. | $\frac{e^2}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com