精英家教网 > 高中数学 > 题目详情
8.如图,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,M是CC1中点.
(1)求证:平面AB1M⊥平面A1ABB1
(2)过点C作一截面与平面AB1M平行,并说明理由.

分析 (1)连结A1B交AB于P,则P是A1B的中点,取AB中点D,连结CD、PD、MP,推导出四边形MCDP是平行四边形,从而CD∥MP,求出CD⊥AB,CC1⊥CD,CD⊥AA1,从而MP⊥平面A1ABB1,由此能证明平面AB1M⊥平面A1ABB1
(2)取AB中点D,BB1中点N,连结CD、CN、DN,则截面CDN是过点C与平面AB1M平行的截面.利用面面垂直的判定定理能证明平面CDN∥平面AB1M.

解答 证明:(1)连结A1B交AB于P,则P是A1B的中点,取AB中点D,连结CD、PD、MP,
∵M、D分别是CC1、AB的中点,
∴DP∥CM,且DP=CM,
∴四边形MCDP是平行四边形,
∴CD∥MP,∵AC=BC,∴CD⊥AB,
∵CC1⊥平面ABC,∴CC1⊥CD,
又AA1∥CC1,∴CD⊥AA1
∴CD⊥平面A1ABB1,∴MP⊥平面A1ABB1
又∵MP?平面AB1M,
∴平面AB1M⊥平面A1ABB1
解:(2)取AB中点D,BB1中点N,
连结CD、CN、DN,则截面CDN是过点C与平面AB1M平行的截面.
理由如下:
∵D、N分别是AB、BB1的中点,∴DN∥AB1
又在矩形BCC1B1中,M是CC1的中点,
∴B1N∥CM,B1N=CM,
∴四边形CMB1N是平行四边形,∴B1M∥CN,
∵CN、DN?平面AB1M,B1M、AB1?平面AB1M,
∴CN∥平面AB1M,DN∥平面AB1M,
∵CN∩DN=N,CN、DN?平面CDN,
∴平面CDN∥平面AB1M.

点评 本题考查面面垂直、面面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,数形结合思想,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设函数f(x)满足2x2f(x)+x3f'(x)=ex,f(2)=$\frac{e^2}{8}$,则x∈[2,+∞)时,f(x)的最小值为(  )
A.$\frac{e^2}{2}$B.$\frac{{3{e^2}}}{2}$C.$\frac{e^2}{4}$D.$\frac{e^2}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示的矩形是长为100码,宽为80码的足球比赛场地.其中PH是足球场地边线所在的直线,AB是球门,且AB=8码.从理论研究及经验表明:当足球运动员带球沿着边线奔跑时,当运动员(运动员看做点P)所对AB的张角越大时,踢球进球的可能性就越大.
(1)若PH=20,求tan∠APB的值;
(2)如图,当某运动员P沿着边线带球行进时,何时(距离AB所在直线的距离)开始射门进球的可能性会最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{{x}^{2}}{{e}^{x}}$,直线y=$\frac{a}{e}$x(a≠0)为曲线y=f(x)的一条切线.
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函数h(x)=g(x)-bx2为增函数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过定点M的直线ax+y-1=0与过定点N的直线x-ay+2a-1=0交于点P,则|PM|•|PN|的最大值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中,$AC=2,A=\frac{2π}{3},\sqrt{3}cosC=3sinB$.
(1)求AB;
(2)若D为BC边上一点,且△ACD的面积为$\frac{{3\sqrt{3}}}{4}$,求∠ADC的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若平面PAD⊥平面ABCD,求证:AF⊥EF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将函数$f(x)=3sin(2x+\frac{π}{3})$的图象向左平移$\frac{π}{6}$个单位,在向上平移1个单位,得到g(x)的图象,若g(x1)g(2)=16,且${x_1},{x_2}∈[-\frac{3π}{2},\frac{3π}{2}]$,则2x1-x2的最大值为(  )
A.$\frac{23}{12}π$B.$\frac{35}{12}π$C.$\frac{19}{6}π$D.$\frac{59}{12}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在(1-2x)7(1+x)的展开式中,含x2项的系数为(  )
A.71B.70C.21D.49

查看答案和解析>>

同步练习册答案