分析 (1)推导出AB∥CD,从而AB∥平面PDC,由此能证明AB∥EF.
(2)推导出AB⊥AD,从而AB⊥平面PAD,进而AB⊥AF,由AB∥EF,能证明AF⊥EF.
解答 证明:(1)因为ABCD是矩形,所以AB∥CD.![]()
又因为AB?平面PDC,CD?平面PDC,
所以AB∥平面PDC.
又因为AB?平面ABEF,平面ABEF∩平面PDC=EF,
所以AB∥EF.
(2)因为ABCD是矩形,所以AB⊥AD.
又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
AB?平面ABCD,所以AB⊥平面PAD.
又AF?平面PAD,所以AB⊥AF.
又由(1)知AB∥EF,所以AF⊥EF.
点评 本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,数形结合思想,考查创新意识、应用意识,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $-\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}-\frac{3}{2}i$ | B. | $\frac{1}{2}+\frac{3}{2}i$ | C. | 1+3i | D. | 1-3i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1] | B. | [0,$\sqrt{2}$] | C. | [$-\sqrt{2}$,$\sqrt{2}$] | D. | [-2,2] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com