精英家教网 > 高中数学 > 题目详情
9.若复数z=(x2+2x-3)+(x+3)i为纯虚数,则实数x的值为(  )
A.-3B.1C.-3或1D.-1或3

分析 根据复数z=(x2+2x-3)+(x+3)i为纯虚数,可得x2+2x-3=0,x+3≠0,解得x.

解答 解:∵复数z=(x2+2x-3)+(x+3)i为纯虚数,
∴x2+2x-3=0,x+3≠0,解得x=1.
故选:B.

点评 本题考查了纯虚数的定义、方程的解法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若平面PAD⊥平面ABCD,求证:AF⊥EF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在四面体ABCD中,若AB=CD=$\sqrt{3}$,AC=BD=2,AD=BC=$\sqrt{5}$,则直线AB与CD所成角的余弦值为(  )
A.-$\frac{1}{3}$B.-$\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在(1-2x)7(1+x)的展开式中,含x2项的系数为(  )
A.71B.70C.21D.49

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式组$\left\{\begin{array}{l}{2x-y+6≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,表示的平面区域的面积为(  )
A.48B.24C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是7500.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知矩阵$M=[{\begin{array}{l}1&a\\ 3&b\end{array}}]$的一个特征值λ1=-1,及对应的特征向量$\overrightarrow e=[{\begin{array}{l}1\\{-1}\end{array}}]$,求矩阵M的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设正方形ABCD边长为2,H是边DA的中点,若在正方形ABCD内部随机取一点P,则满足|PH|<$\sqrt{2}$的概率为$\frac{2+π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某经销商从外地一水殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:

(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;
(2)试估计这批小龙虾的平均重量;
(3)为适应市场需求,制定促销策略.该经销商又将这批小龙虾分成三个等级,并制定出销售单价,如下表:
等级一等品二等品三等品
重量(g)[5,25)[25,35)[35,55]
单价(元/只)1.21.51.8
试估算该经销商以每千克至多花多少元(取整数)收购这批小龙虾,才能获得利润?

查看答案和解析>>

同步练习册答案