精英家教网 > 高中数学 > 题目详情
14.为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是7500.

分析 由题意,其他年级抽取200人,其他年级共有学生3000人,即可求出该校学生总人数.

解答 解:由题意,其他年级抽取200人,其他年级共有学生3000人,则该校学生总人数是$\frac{3000×500}{200}$=7500.
故答案为:7500.

点评 本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知复数z满足(1+i)•z=2-i,则复数z的共轭复数为(  )
A.$\frac{1}{2}-\frac{3}{2}i$B.$\frac{1}{2}+\frac{3}{2}i$C.1+3iD.1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.AQI是表示空气质量的指数,AQI指数值越小,表明空气质量越好,当AQI指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI指数值的统计数据,图中点A表示4月1日的AQI指数值为201,则下列叙述不正确的是(  )
A.这12天中有6天空气质量为“优良”B.这12天中空气质量最好的是4月9日
C.这12天的AQI指数值的中位数是90D.从4日到9日,空气质量越来越好

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合M={-2,2},N={x|x<0,或x>1},则下列结论正确的是(  )
A.N⊆MB.M⊆NC.M∩N=ND.M∩N={2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z=(x2+2x-3)+(x+3)i为纯虚数,则实数x的值为(  )
A.-3B.1C.-3或1D.-1或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点在直线l:$\sqrt{3}$x-y-3=0上,且椭圆上任意两个关于原点对称的点与椭圆上任意一点的连线的斜率之积为-$\frac{1}{4}$.
(1)求椭圆C的方程;
(2)若直线t经过点P(1,0),且与椭圆C有两个交点A,B,是否存在直线l0:x=x0(其中x0>2)使得A,B到l0的距离dA,dB满足$\frac{d_A}{d_B}=\frac{{|{PA}|}}{{|{PB}|}}$恒成立?若存在,求出x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.余江人热情好客,凡逢喜事,一定要摆上酒宴,请亲朋好友、同事高邻来助兴庆贺.欢度佳节,迎亲嫁女,乔迁新居,学业有成,仕途风顺,添丁加口,朋友相聚,都要以酒示意,借酒表达内心的欢喜.而凡有酒宴,一定要划拳,划拳是余江酒文化的特色.余江人划拳注重礼节,形式多样;讲究规矩,蕴含着浓厚的传统文化和淳朴的民俗特色.在礼节上,讲究“尊老尚贤敬远客”一般是东道主自己或委托桌上一位酒量好的划拳高手来“做关”,--就是依次陪桌上会划拳的划一年数十二拳(也有半年数六拳).十二拳之后晚辈还要敬长辈一杯酒.
再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他还要敬他叔叔一杯,规则如下:前两拳只有小明猜赢叔叔,叔叔才会喝下这杯敬酒,且小明也要陪喝,如果第一拳小明没猜到,则小明喝下第一杯酒,继续猜第二拳,没猜到继续喝第二杯,但第三拳不管谁赢双方同饮自己杯中酒,假设小明每拳赢叔叔的概率为$\frac{1}{3}$,问在敬酒这环节小明喝酒三杯的概率是多少(  )
(猜拳只是一种娱乐,喝酒千万不要过量!)
A.$\frac{4}{9}$B.$\frac{8}{27}$C.$\frac{2}{9}$D.$\frac{4}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的(  )
A.必要不充分条件B.既不充分也不必要条件
C.充要条件D.充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设Sn是数列{an}的前n项和,an>0,且4Sn=an(an+2).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{({a_n}-1)({a_n}+1)}}$,Tn=b1+b2+…+bn,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案