精英家教网 > 高中数学 > 题目详情
19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点在直线l:$\sqrt{3}$x-y-3=0上,且椭圆上任意两个关于原点对称的点与椭圆上任意一点的连线的斜率之积为-$\frac{1}{4}$.
(1)求椭圆C的方程;
(2)若直线t经过点P(1,0),且与椭圆C有两个交点A,B,是否存在直线l0:x=x0(其中x0>2)使得A,B到l0的距离dA,dB满足$\frac{d_A}{d_B}=\frac{{|{PA}|}}{{|{PB}|}}$恒成立?若存在,求出x0的值,若不存在,请说明理由.

分析 (1)当y=0,求得焦点坐标,利用直线的斜率公式,即可求得kPM•kPN=-$\frac{{b}^{2}}{{a}^{2}}$=-$\frac{1}{4}$,则a2=4b2,即可求得a和b的值,即可求得椭圆方程;
(2)设直线l的方程为y=k(x-1),代入椭圆方程,运用韦达定理,假设存在这样的直线l0,运用点到直线的距离公式和两点的距离公式,可得$\frac{{x}_{0}-{x}_{1}}{{x}_{0}-{x}_{2}}$=$\frac{{x}_{1}-1}{1-{x}_{2}}$,化简整理代入,即可判断.

解答 解:(1)由椭圆的焦点在x轴上,由椭圆的焦点在直线l:$\sqrt{3}$x-y-3=0,
∴右焦点F2($\sqrt{3}$,0),即c=$\sqrt{3}$,
设P(x0,y0),M(x1,y1),N(-x1,-y1).
则$\frac{{x}_{0}^{2}}{{a}^{2}}+\frac{{y}_{0}^{2}}{{b}^{2}}=1$,$\frac{{x}_{1}^{2}}{{a}^{2}}+\frac{{y}_{1}^{2}}{{b}^{2}}=1$,得到y02=b2(1-$\frac{{x}_{0}^{2}}{{a}^{2}}$),y12=b2(1-$\frac{{x}_{1}^{2}}{{a}^{2}}$),
∴kPM•kPN=$\frac{{y}_{1}-{y}_{0}}{{x}_{1}-{x}_{0}}$•$\frac{{y}_{1}+{y}_{0}}{{x}_{1}+{x}_{0}}$=$\frac{{y}_{0}^{2}-{y}_{1}^{2}}{{x}_{0}^{2}-{x}_{1}^{2}}$=-$\frac{{b}^{2}}{{a}^{2}}$.
即$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{4}$,即a2=4b2
由a2-b2=c2=3,解得:a2=4,b2=1,
∴椭圆C的方程$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)设直线l的方程为y=k(x-1),
$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,整理得:(1+4k2)x2-8k2x+4k2-4=0,
设A(x1,y1),B(x2,y2)(x1>x2),
即有x1+x2=$\frac{8{k}^{2}}{1+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$,
存在直线l0:x=x0(其中x0>2),
使得A,B到l0的距离dA,dB满足:$\frac{d_A}{d_B}=\frac{{|{PA}|}}{{|{PB}|}}$恒成立,
∴$\frac{{x}_{0}-{x}_{1}}{{x}_{0}-{x}_{2}}$=$\frac{{x}_{1}-1}{1-{x}_{2}}$,即为2x1x2+2x0-(1+x0)(x1+x2)=0,
即有$\frac{8{k}^{2}-8}{1+4{k}^{2}}$+2x0-(1+x0)•$\frac{8{k}^{2}}{1+4{k}^{2}}$=0,
即为8k2-8+2x0(1+4k2)-8k2(1+x0)=0,
∴2x0=8,解得x0=4>2.
故存在这样的直线l:x=4.

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系,解题时要认真审题,注意椭圆性质、根的判别式、韦达定理的合理运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图所示,向量$\overrightarrow{O{Z_1}},\overrightarrow{O{Z_2}}$所对应的复数分别为Z1,Z2,则Z1•Z2=(  )
A.4+2iB.2+iC.2+2iD.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.△ABC的内角A,B,C的对边分别为a,b,c,已知2c-a=2bcosA.
(1)求角B的大小;
(2)若a=2,b=$\sqrt{7}$,求c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数a,b满足2<a<b<3,下列不等关系中一定成立的是(  )
A.a3+15b>b3+15aB.a3+15b<b3+15aC.b•2a>a•2bD.b•2a<a•2b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.为调査某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本,其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数是7500.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设Sn,Tn分别是数列{an}和{bn}的前n项和,已知对于任意n∈N*,都有3an=2Sn+3,数列{bn}是等差数列,且T5=25,b10=19.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{{{a}_{n}b}_{n}}{n(n+1)}$,求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合M={x|(x-1)(x+2)<0},N={x∈Z||x|≤2},则M∩N=(  )
A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l的方程为ax+2y-3=0,且a∈[-5,4],则直线l的斜率不小于1的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xoy中,曲线C的参数方程为$\left\{\begin{array}{l}x=4{t^2}\\ y=4t\end{array}\right.$(t为参数),以O为极点x轴的正半轴为极轴建极坐标系,直线l的极坐标方程为ρ(cosθ-sinθ)=4,且与曲线C相交于A,B两点.
(Ⅰ)在直角坐标系下求曲线C与直线l的普通方程;
(Ⅱ)求△AOB的面积.

查看答案和解析>>

同步练习册答案