精英家教网 > 高中数学 > 题目详情
19.已知点(x1,y1)在函数y=sin2x图象上,点(x2,y2)在函数y=3的图象上,则(x1-x22+(y1-y22的最小值为(  )
A.2B.3C.4D.9

分析 要求(x1-x22+(y1-y22的最小值,只需(x1-x22的值最小,(y1-y22的值最小即可.

解答 解:由点(x2,y2)在函数y=3的图象上,
可知:无论x2的值是多少,y2=3.
要使(x1-x22最小,只需x1=x2
(y1-y22的值最小,只求函数y=sin2x到直线y=3的距离最短,
即函数y=sin2x的最大值到直线y=3的距离最短.
∴y1-y2的最小值为2.
那么:(x1-x22+(y1-y22的最小值为4.
故选C

点评 本题给出正弦型三角函数的图象和直线y=3的关系最值的问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,E,F分别是BB1,DD1的中点,G为AE的中点且FG=3,则△EFG的面积的最大值为(  )
A.$\frac{3}{2}$B.3C.$2\sqrt{3}$D.$\frac{{9\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x≥0,求证:x≥sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合M={-1,1},N={x|$\frac{1}{x}$<2},则下列结论正确的是(  )
A.N⊆MB.M⊆NC.M∩N=ND.M∩N={1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式组$\left\{\begin{array}{l}{2x-y+6≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,表示的平面区域的面积为(  )
A.48B.24C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合U={x|x>0},A={x|x≥2},则∁UA={x|0<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知曲线C1:y=ex上一点A(x1,y1),曲线C2:y=1+ln(x-a)(a>0)上一点B(x2,y2),当y1=y2时,对任意的x1,x2,都有|AB|≥e,则a的最小值为e-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某多面体的三视图如图所示,则该多面体外接球的体积为$\frac{{41\sqrt{41}}}{48}π$.

查看答案和解析>>

同步练习册答案