分析 由不等式的性质可得:a5+b+c+d≥4$\root{4}{{a}^{5}bcd}$=4a,同理可得其他三个式子,将各式相加即可得出结论.
解答 证明:∵a,b,c,d是正实数,且abcd=1,
∴a5+b+c+d≥4$\root{4}{{a}^{5}bcd}$=4a,
同理可得:a+b5+c+d≥4$\root{4}{a{b}^{5}cd}$=4b,
a+b+c5+d≥4$\root{4}{ab{c}^{5}d}$=4c,
a+b+c+d5≥4$\root{4}{abc{d}^{5}}$=4d,
将上面四式相加得:a5+b5+c5+d5+3a+3b+3c+3d≥4a+4b+4c+4d,
∴a5+b5+c5+d5≥a+b+c+d.
点评 本题考查了不等式的证明,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{12}$,$\frac{π}{4}$] | B. | [$\frac{π}{3}$,$\frac{5π}{12}$) | C. | ($\frac{π}{4}$,$\frac{π}{3}$] | D. | [$\frac{π}{6}$,$\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | $\frac{17}{24}$ | D. | -$\frac{17}{24}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 3 | C. | $2\sqrt{3}$ | D. | $\frac{{9\sqrt{3}}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com