精英家教网 > 高中数学 > 题目详情
20.已知二阶矩阵M有特征值λ=8及对应的一个特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,并且矩阵M将点(-1,3)变换为(4,16),求矩阵M.

分析 设出矩阵,利用特征向量的定义,即二阶变换矩阵的概念,建立方程组,即可得到结论.

解答 解:设$M=[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,
∵特征值λ=8及对应的一个特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,矩阵M将点(-1,3)变换为(4,16),
∴$\left\{\begin{array}{l}{a+b=8}\\{c+d=8}\\{-a+3b=4}\\{-c+3d=16}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=5}\\{b=3}\\{c=2}\\{d=6}\end{array}\right.$,∴M=$[\begin{array}{l}{5}&{3}\\{2}&{6}\end{array}]$…(10分)

点评 本题考查特征值,考查二阶变换矩阵,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在△ABC中,a=4,b=$\sqrt{7},c=\sqrt{3}$,则角B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知三棱锥P-ABC的各顶点都在同一球的面上,且PA⊥平面ABC,若球O的体积为$\frac{20\sqrt{5}π}{3}$(球的体积公式:V=$\frac{4π}{3}$R3,其中R为球的半径),AB=2,AC=1,∠BAC=60°,则PA为(  )
A.4B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.将圆$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.(θ$为参数)上的每一点的横坐标保持不变,纵坐标变为原来的$\frac{1}{2}$倍,得到曲线C.
(1)求出C的普通方程;
(2)设直线l:x+2y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,
求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足条件$\left\{\begin{array}{l}x-y+3≥0\\ 2x+y-4≥0\\ x≤3\end{array}\right.$则z=x2+(y+1)2的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在坐标系中,圆C的圆心在极轴上,且过极点和点(3$\sqrt{2}$,$\frac{π}{4}$),求圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在校运会800米预赛中,甲、乙两名选手被随机地分配到A、B两个小组之一,则他们被分到同一小组的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),圆C的方程为x2+y2-4x-2y+4=0.以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求l的普通方程与C的极坐标方程;
(2)已知l与C交于P,Q,求|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱柱ABCD-A1B1C1D1中,侧面ADD1A1和侧面CDD1C1都是矩形,BC∥AD,△ABD是边长为2的正三角形,E,F分别为AD,A1D1的中点.
(Ⅰ)求证:DD1⊥平面ABCD;
(Ⅱ)求证:平面A1BE⊥平面ADD1A1
(Ⅲ)若CF∥平面A1BE,求棱BC的长度.

查看答案和解析>>

同步练习册答案