精英家教网 > 高中数学 > 题目详情

对于任意两个正整数m, n , 定义某种运算“※”如下:当m ,n都为正偶数或正奇数时,=中一个为正偶数,另一个为正奇数时,=.则在此定义下,集合中的元素个数是(     )

A.10个          B.15个           C.16个             D.18个

 

【答案】

B

【解析】

试题分析:从定义出发,抓住的奇偶性对12实行分拆是解决本题的关键,当同奇偶时,根据=将12分拆两个同奇偶数的和,当一奇一偶时,根据=将12分拆一个奇数与一个偶数的积,再算其组数即可.

同奇偶,有,前面的每种可以交换位置,最后一种只有1个点,这时有;

一奇一偶,有,每种可以交换位置,这时有;

∴共有个.

考点:考查分析问题的能力以及集合中元素的性质.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列叙述
①集合A=(m+2,2m-1)⊆B=(4,5),则m∈[2,3]
②两向量平行,那么两向量的方向一定相同或者相反
③若不等式(-1)na<2+
(-1)n+1
n
对任意正整数n恒成立,则实数a的取值范围是[-2,
3
2
)

④对于任意两个正整数m,n,定义某种运算⊕如下:
当m,n奇偶性相同时,m⊕n=m+n;当m,n奇偶性不同时,m⊕n=mn,在此定义下,集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的个数是15个.
上述说法正确的是
③,④
③,④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意两个正整数m,n,定义某种运算“”如下:当m,n都为正偶数或正奇数时,mn=m+n;当m,n中一个为正偶数,另一个为正奇数时,mn=mn。则在此定义下,集合中的元素个数是

       A.10个                      B.15个                      C.16个                     D.18个

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省揭阳市揭东县云路中学高三(上)10月月考数学试卷(文科)(解析版) 题型:选择题

对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是( )
A.10个
B.15个
C.16个
D.18个

查看答案和解析>>

同步练习册答案