精英家教网 > 高中数学 > 题目详情
11.若将字母o,o,r,t随机排列,则排得root的概率为(  )
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{1}{2}$

分析 分别考虑第一个字母刚好为r,第二个字母刚好为o,第三个字母刚好为o的可能性,即可求得结论.

解答 解:第一个字母刚好为r的可能性为$\frac{1}{4}$,
第二个字母刚好为o的可能性为$\frac{2}{3}$(在剩下的o,o,t三个字母中选),
第三个字母刚好为o的可能性为$\frac{1}{2}$(在剩下的o,t两个字母中选)
故将这四个字母随机地排成一行,恰好排成英文单词“root”的概率为 $\frac{1}{4}$×$\frac{2}{3}$×$\frac{1}{2}$=$\frac{1}{12}$,
故选:B

点评 本题考查等可能事件的概率,解题的关键是确定字母在各个位置的可能性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在下列四个函数中,在(0,+∞)为增函数的是(  )
A.y=3-xB.y=x2-3xC.$f(x)={(\frac{1}{2})^x}$D.f(x)=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平行四边形ABCD中,E,F分别是BC,CD的中点,DE交AF于点G,记$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,则$\overrightarrow{AG}$=(  )
A.$\frac{2}{5}$$\overrightarrow{a}$-$\frac{4}{5}$$\overrightarrow{b}$B.$\frac{2}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow{b}$C.-$\frac{2}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow{b}$D.-$\frac{2}{5}$$\overrightarrow{a}$-$\frac{4}{5}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校高一年级有200人,其中100人参加数学第二课堂活动.在期末考试中,分别对参加数学第二课堂活动的同学与未参加数学第二课堂活动的同学的数学成绩进行调查.按照学生数学成绩优秀与非优秀人数统计后,构成如下不完整的2×2列联表:
优秀非优秀总计
参加数学第二课堂活动p
未参加数学第二课堂活动q100
总计200
已知p是(1+2x)5展开式中的第三项系数,q是(1+2x)5展开式中的第四项的二项式系数.
(Ⅰ)求p与q的值;
(Ⅱ)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩优秀与参加数学第二课堂活动有关”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)的定义域为[-1,5],f(x)的导函数f′(x)的图象如图所示.若f(x)在区间[m,m+1]上是单调函数,则实数m的取值范围是{m|m=-1或0≤m≤1或2≤m≤3或m=4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若圆C的圆心为(2,1),且经过原点O,则圆C的标准方程是(  )
A.(x-2)2+(y-1)2=$\sqrt{5}$B.(x-2)2+(y-1)2=5C.(x+2)2+(y+1)2=$\sqrt{5}$D.(x+2)2+(y+1)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知两个实数a、b(a≠b)满足aea=beb,命题p:lna+a=lnb+b;命题q:(a+1)(b+1)<0.则下面命题是真命题的是(  )
A.p∨(¬q)B.p∧(¬q)C.p∨qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=x3+ax2+bx+a2在x=1处的极值为10,则a+b=(  )
A.0或-7B.-7C.0D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.编号为1-8的8个完全相同的小球,现将其染成4个白色和4个红色,要求红色小球编号之和大于白色小球编号之和,则不同的染色方案有16种.

查看答案和解析>>

同步练习册答案