分析 由$|{\overrightarrow b}$|=2,不妨取$\overrightarrow{b}$=(2,0),设$\overrightarrow{a}$=(x,y),由$\overrightarrow a•\overrightarrow b=2$,可得$\overrightarrow{a}$=(1,y),则f(t)=$\sqrt{1+[(1-2t)y]^{2}}$,即可得出.
解答 解:由$|{\overrightarrow b}$|=2,不妨取$\overrightarrow{b}$=(2,0),
设$\overrightarrow{a}$=(x,y),
∵$\overrightarrow a•\overrightarrow b=2$,
∴2x=2,解得x=1.
∴$\overrightarrow{a}$=(1,y),
∴${t\overrightarrow b+(1-2t)\overrightarrow a}$=(1,(1-2t)y)
则f(t)=|${t\overrightarrow b+(1-2t)\overrightarrow a}$|=$\sqrt{1+[(1-2t)y]^{2}}$≥1,当且仅当(1-2t)y=0时取等号.
故答案为:1.
点评 本题考查了向量数量积运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-2,0)∪(2,+∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,3] | B. | (1,3) | C. | $[{\frac{1}{2},\frac{3}{2}}]$ | D. | $({\frac{1}{2},\frac{3}{2}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com