精英家教网 > 高中数学 > 题目详情
(文)(1)已知动点P(x,y)到点F(0,1)与到直线y=-1的距离相等,求点P的轨迹L的方程;
(2)若正方形ABCD的三个顶点A(x1,y1),B(x2,y2),C(x3,y3)(x1<0≤x2<x3)在(1)中的曲线L上,设BC的斜率为k,l=|BC|,求l关于k的函数解析式l=f(k);
(3)由(2),求当k=2时正方形ABCD的顶点D的坐标.
【答案】分析:(1)利用抛物线的定义,可求点P的轨迹L的方程;
 (2)由(1),假设直线BC的方程为:(k>0),与曲线方程联立,则得,,同理,根据|AB|=|BC|,可得函数关系式;
(3)由(2)及k=2易得点B、C、A的坐标从而可求D的坐标.
解答:解:(1)由题设可得动点P的轨迹方程为x2=4y.                         (4分)
(2)由(1),可设直线BC的方程为:(k>0),消y得x2-4kx-x22+4kx2=0,
易知x2、x3为该方程的两个根,故有x2+x3=4k,得x3=4k-x2
从而得,(7分)
类似地,可设直线AB的方程为:
从而得,(9分)
由|AB|=|BC|,得k2•(2k-x2)=(2+kx2),
解得,(11分)(k>0).                              (13分)
(3)由(2)及k=2可得点B、C、A的坐标分别为,,所以.                              (18分)
点评:本题以抛物线为载体,考查抛物线的标准方程,考查函数关系式的求解,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网[理]如图,已知动点A,B分别在图中抛物线y2=4x及椭圆
x2
4
+
y2
3
=1
的实线上运动,若AB∥x轴,点N的坐标为(1,0),则△ABN的周长l的取值范围是
 

[文]点P是曲线y=x2-lnx上任意一点,则P到直线y=x-2的距离的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区二模)(文)(1)已知动点P(x,y)到点F(0,1)与到直线y=-1的距离相等,求点P的轨迹L的方程;
(2)若正方形ABCD的三个顶点A(x1,y1),B(x2,y2),C(x3,y3)(x1<0≤x2<x3)在(1)中的曲线L上,设BC的斜率为k,l=|BC|,求l关于k的函数解析式l=f(k);
(3)由(2),求当k=2时正方形ABCD的顶点D的坐标.

查看答案和解析>>

科目:高中数学 来源:卢湾区二模 题型:解答题

(文)(1)已知动点P(x,y)到点F(0,1)与到直线y=-1的距离相等,求点P的轨迹L的方程;
(2)若正方形ABCD的三个顶点A(x1,y1),B(x2,y2),C(x3,y3)(x1<0≤x2<x3)在(1)中的曲线L上,设BC的斜率为k,l=|BC|,求l关于k的函数解析式l=f(k);
(3)由(2),求当k=2时正方形ABCD的顶点D的坐标.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省盐城中学高二(上)期末数学试卷(解析版) 题型:填空题

[理]如图,已知动点A,B分别在图中抛物线y2=4x及椭圆的实线上运动,若AB∥x轴,点N的坐标为(1,0),则△ABN的周长l的取值范围是   
[文]点P是曲线y=x2-lnx上任意一点,则P到直线y=x-2的距离的最小值是   

查看答案和解析>>

同步练习册答案