精英家教网 > 高中数学 > 题目详情
已知向量
a
=(2cosωx,1),
b
=(sinωx+cosωx,-1)
,(ω∈R,ω>0),设函数f(x)=
a
b
(x∈R)
,若f(x)的最小正周期为
π
2

(1)求ω的值;
(2)求f(x)的单调区间.
分析:(1)由已知中向量
a
=(2cosωx,1),
b
=(sinωx+cosωx,-1)
,(ω∈R,ω>0),函数f(x)=
a
b
(x∈R)
,代入向量数量积公式,易得到函数的解析式,根据f(x)的最小正周期为
π
2
,易得到ω的值;
(2)根据(1)的结论,可得到f(x)的解析式,根据正弦型函数的单调性的确定方法,即可得到f(x)的单调区间.
解答:解:f(x)=
a
b
=2cosωx•(sinωx+cosωx)-1

=sin2ωx+1+cos2ωx-1=
2
sin(2ωx+
π
4
)

(1)由T=
=
π
2
⇒ω=2

(2)以下均有k∈Z
-
π
2
+2kπ≤4x+
π
4
π
2
+2kπ⇒x∈[
2
-
16
2
+
π
16
]

π
2
+2kπ≤4x+
π
4
2
+2kπ⇒x∈[
2
+
π
16
2
+
16
]

所以函数的单调递增区间为[
2
-
16
2
+
π
16
]
,单调递减区间为[
2
+
π
16
2
+
16
]
点评:本题考查的知识点是正弦函数的单调性,三角函数的周期性及其求法,其中根据已知条件结合平面向量的数量积运算公式,得到函数的解析式,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2cosα,2sinα),
b
=(3cosβ,3sinβ)
,若向量
a
b
的夹角为60°,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosθ,2sinθ)
θ∈(
π
2
,π),
b
=(0,-1)
,则向量
a
b
的夹角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2cosθ,1),
b
=(sinθ+cosθ,1),- 
π
2
<θ<
π
2

(I)若
a
b
,求θ的值
(II)设f(θ)=
a
b
,求函数f(θ)的最大值及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)已知向量
a
=(2cos,2sinx)
,向量
b
=(
3
cosx,-cosx)
,函数f(x)=
a
b
-
3

(1)求函数f(x)(2)的最小正周期;
(3)求函数f(x)(4)的单调递增区间;
(5)求函数f(x)(6)在区间[
π
12
12
]
(7)上的值域.

查看答案和解析>>

同步练习册答案