精英家教网 > 高中数学 > 题目详情
设[x]表示不超过x的最大整数,如[
5
]=2,[π]=3,[k]=k(k∈N*).我们发现:
[
1
]+[
2
]+[
3
]=3;
[
4
]+[
5
]+[
6
]+[
7
]+[
8
]=10;
[
9
]+[
10
]+[
11
]+[
12
]+[
13
]+[
14
]+[
15
]=21;

通过合情推理,写出一般性的结论:
[
n2
]+[
n2+1
]+[
n2+2
]+…+[
(n+1)2-1
]
=n(2n+1)(n∈N*
[
n2
]+[
n2+1
]+[
n2+2
]+…+[
(n+1)2-1
]
=n(2n+1)(n∈N*
(用含n的式子表示).
分析:根据条件通过观察,可以得到一个一般性的结论 [
n2
]+[
n2+1
]+[
n2+2
]+…+[
(n+1)2-1
]
=n(2n+1)(n∈N*).
解答:解:根据[
1
]+[
2
]+[
3
]=3;
[
4
]+[
5
]+[
6
]+[
7
]+[
8
]=10;
[
9
]+[
10
]+[
11
]+[
12
]+[
13
]+[
14
]+[
15
]=21;

通过观察,发现,等式左边方括号内第一个数是完全平方数,以后依次增加1,最后一个是后一个完全平方数减1,而右边可以写成两个数的积的形式.
我们可以得到一个一般性的结论:[
n2
]+[
n2+1
]+[
n2+2
]+…+[
(n+1)2-1
]
=n(2n+1)(n∈N*).
故答案为:[
n2
]+[
n2+1
]+[
n2+2
]+…+[
(n+1)2-1
]
=n(2n+1)(n∈N*).
点评:本题主要考查的知识点是归纳推理,由特殊的列子得到一般性的结论,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设[x]表示不超过x的最大整数(如[2]=2,[
5
4
]=1),对于给定的n∈N*,定义
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),则当x∈[
3
2
,3)
时,函数
C
x
8
的值域是(  )
A、[
16
3
,28]
B、[
16
3
,56)
C、(4,
28
3
)∪
[28,56)
D、(4,
16
3
]∪(
28
3
,28]

查看答案和解析>>

科目:高中数学 来源: 题型:

设[x]表示不超过x的最大整数(如:[1]=1,[
5
2
]=2
),则定义在[2,4)的函数f(x)=x[x]-ax(其中a为常数,且a≤4)的值域为(  )
A、[4-2a,64-4a)
B、[4-2a,9-3a)∪[27-3a,64-4a)
C、[9-3a,64-4a)
D、[4-2a,9-3a]∪(27-3a,64-4a]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州二模)设[x]表示不超过x的最大整数(如[2]=2,[1.3]=1),已知函数f(x)=
[x+
1
2
]
[x]+
1
2
(x≥0),当f(x)<1时,实数x的取值范围是
{x|k≤x<k+
1
2
,k∈N}
{x|k≤x<k+
1
2
,k∈N}

查看答案和解析>>

科目:高中数学 来源:湖南 题型:单选题

设[x]表示不超过x的最大整数(如[2]=2,[
5
4
]=1),对于给定的n∈N*,定义
Cxn
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),则当x∈[
3
2
,3)
时,函数C8x的值域是(  )
A.[
16
3
,28]
B.[
16
3
,56)
C.(4,
28
3
)∪
[28,56)
D.(4,
16
3
]∪(
28
3
,28]

查看答案和解析>>

科目:高中数学 来源:湖南省高考真题 题型:填空题

设[x]表示不超过x的最大整数,(如[2]=2,=1),对于给定的n∈N+,定义,x∈[1,+∞),则(    ),当x∈[2,3)时,函数的值域是(    )。

查看答案和解析>>

同步练习册答案