精英家教网 > 高中数学 > 题目详情
如图,三棱柱中,侧棱平面为等腰直角三角形,,且分别是的中点.

(1)求证:平面
(2)求锐二面角的余弦值.
(1)详见解析,(2)

试题分析:(1)要证明平面,需证明,前面在平面中证明,利用勾股定理,即通过计算设,则.∴,∴.后者通过线面垂直与线线垂直的转化得,即由面,得,再得。(2)求二面角的余弦值,可通过作、证、算,本题可过,则为所求二面角的平面角.也可利用空间向量求,先建系,求出平面及平面的法向量,利用向量数量积求出两法向量的夹角,最后根据二面角与向量夹角关系得出结论.
试题解析:(1)连结,∵是等腰直角三角形斜边的中点,∴.
三棱柱为直三棱柱,
∴面
.     2分
,则.
,∴.           4分
,∴ 平面.          6分
(2)以为坐标原点,分别为轴建立直角坐标系如图,设


.          8分
由(1)知,平面
∴可取平面的法向量.
设平面的法向量为

∴可取.          10分
设锐二面角的大小为
.
∴所求锐二面角的余弦值为.          12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥E﹣ABCD中,矩形ABCD所在的平面与平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点
(1)求证:DE∥平面FGH;
(2)若点P在直线GF上,,且二面角D﹣BP﹣A的大小为,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面是平行四边形,,
.若中点,为线段上的点,且
(1)求证:平面
(2)求PC与平面PAD所成角的正弦值.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形为平行四边形,平面.

(1)若是线段的中点,求证:平面
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,等腰梯形ABCD,AD//BC,P是平面ABCD外一点,P在平面ABCD的射影O恰在AD上,.

(1)证明:
(2)求二面角A-BP-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱柱平面,四边形为正方形,分别为中点.
(1)求证:∥面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在边长为1的等边三角形ABC中,DE分别是ABAC边上的点,AD=AEFBC的中点,AFDE交于点G,将沿AF折起,得到如图所示的三棱锥,其中.

(1) 证明://平面;
(2) 证明:平面;
(3)当时,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.

(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于(  )
A.B.C.D.1

查看答案和解析>>

同步练习册答案