精英家教网 > 高中数学 > 题目详情
y轴上两定点B1(0,b)、B2(0,-b),x轴上两动点M,N.P为B1M与B2N的交点,点M,N的横坐标分别为XM、XN,且始终满足XMXN=a2(a>b>0且为常数),试求动点P的轨迹方程.
设P(x,y),M(xm,0),N(xn,0)(2分)
由M,P,B1三点共线,知
y-b
x-0
=
0-b
xm-0
(4分)
所以xm=
bx
b-y
(6分)
同理得xn=
bx
b+y
(9分)xm•xn=
b2x2
b2-y2
=a2
(10分)
故点P轨迹方程为
x2
a2
+
y2
b2
=1
(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1的方程为
x2
4
+y2=1,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)若直线l:y=kx+
2
与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足
OA
OB
<6(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直线l:y=
3
(x-4)
关于直线l1:y=
b
a
x
对称的直线l′与x轴平行.
(1)求双曲线的离心率;
(2)若点M(4,0)到双曲线上的点P的最小距离等于1,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆
x2
a2
+
y2
b
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中心,P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(1)建立适当的平面直角坐标系,求双曲线C的方程;
(2)设过点D的直线l与双曲线C相交于不同两点E、F,若△OEF的面积不小于2
2
,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,圆O的半径为定长r,A是圆O外一定点,P是圆上任意一点.线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹是(  )
A.椭圆B.圆C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点O,其中一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的标准方程;
(2)(普通中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.
(重点中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,C是直线L1:y=mx+6上任一点(A、B、C三点不共线)试问:是否存在实数k,使得△ABC是以AB为底边的等腰三角形?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

【理科】已知双曲线的中心在坐标原点O,一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的方程;
(2)设直线:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的点P到左右两焦点F1,F2的距离之和为2
2
,离心率为
2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点F2的直线l交椭圆于A、B两点,若y轴上一点M(0,
3
7
)
满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

同步练习册答案