精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直线l:y=
3
(x-4)
关于直线l1:y=
b
a
x
对称的直线l′与x轴平行.
(1)求双曲线的离心率;
(2)若点M(4,0)到双曲线上的点P的最小距离等于1,求双曲线的方程.
(1)∵双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)

直线l:y=
3
(x-4)
关于直线l1:y=
b
a
x
对称的直线l′与x轴平行,
∴k=
3
k1=
b
a
,k′=0,
∴|
3
-
b
a
1+
3
b
a
|=|
0-
b
a
1-0•
b
a
|,
解得
b
a
=
3
3
,或
b
a
=-
3
(舍).
b
a
=
3
3
,∴e=
c2
a2
=
1+
b2
a2
=
1+
1
3
=
2
3
3

∴双曲线的离心率e=
2
3
3

(2)∵
b
a
=
3
3
,∴a2=3b2,∴设双曲线为
x2
3b2
-
y2
b2
=1

∵点M(4,0)到双曲线上的点P的最小距离等于1,
∴|
3
b
-4|=1,
解得
3
b
=5,或
3
b
=3.
3
b
=5时,b=
5
3
,∴b2=
25
3
,3b2
=25,
双曲线方程为
x2
25
-
3y2
25
=1

3
b
=3时,b=
3
,b2=3,3b2=9,
双曲线方程为
x2
9
-
y2
3
=1

∴双曲线的方程为
x2
25
-
3y2
25
=1或
x2
9
-
y2
3
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
2
2
,A1,A2分别是椭圆C的左、右两个顶点,点F是椭圆C的右焦点.点D是x轴上位于A2右侧的一点,且满足
1
|A1D|
+
1
|A2D|
=
2
|FD|
=2

(1)求椭圆C的方程以及点D的坐标;
(2)过点D作x轴的垂线n,再作直线l:y=kx+m与椭圆C有且仅有一个公共点P,直线l交直线n于点Q.求证:以线段PQ为直径的圆恒过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l:y=ax+1与双曲线3x2-y2=1有两个不同的交点,
(1)求a的取值范围;
(2)设交点为A,B,是否存在直线l使以AB为直径的圆恰过原点,若存在就求出直线l的方程,若不存在则说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点在原点、对称轴为坐标轴且开口向右的抛物线过点M(4,-4).
(1)求抛物线的方程;
(2)过抛物线焦点F的直线l与抛物线交于不同的两点A、B,若|AB|=8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),已知点(1,e)和(e,
3
2
)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的方程;
(2)设A、B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,若|AF1|-|BF2|=
6
2
,求直线AF的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆M、抛物线N的焦点均在x轴上的,且M的中心和M的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x3-24
2
y-2
3
0-4
2
2
(Ⅰ)求M,N的标准方程;
(Ⅱ)已知定点A(1,
1
2
),过原点O作直线l交椭圆M于B,C两点,求△ABC面积的最大值和此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆
x2
6
+
y2
5
=1
内的一点P(2,-1)的弦,恰好被点P平分,则这条弦所在直线方程(  )
A.y=
5
3
x-
5
6
B.y=
5
3
x-
13
3
C.y=-
5
3
x+
5
6
D.y=
5
3
x+
11
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

y轴上两定点B1(0,b)、B2(0,-b),x轴上两动点M,N.P为B1M与B2N的交点,点M,N的横坐标分别为XM、XN,且始终满足XMXN=a2(a>b>0且为常数),试求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点.
(1)求证:OA⊥OB;
(2)当△OAB的面积等于
10
时,求k的值.

查看答案和解析>>

同步练习册答案