精英家教网 > 高中数学 > 题目详情
如图,椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,直线x=±a和y=±b所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求
|PQ|
|ST|
的最大值及取得最大值时m的值.
(I)e=
c
a
=
3
2
a2-b2
a2
=
3
4
…①
矩形ABCD面积为8,即2a•2b=8…②
由①②解得:a=2,b=1,
∴椭圆M的标准方程是
x2
4
+y2=1

(II)
x2+4y2=4
y=x+m
⇒5x2+8mx+4m2-4=0

由△=64m2-20(4m2-4)>0得-
5
<m<
5

设P(x1,y1),Q(x2,y2),则x1+x2=-
8
5
m,x1x2=
4m2-4
5

|PQ|=
2
(-
8
5
m)
2
-4
4m2-4
5
=
4
2
5
5-m2

当l过A点时,m=1,当l过C点时,m=-1.
①当-
5
<m<-1
时,有S(-m-1,-1),T(2,2+m),|ST|=
2
(3+m)
|PQ|
|ST|
=
4
5
5-m2
(3+m)2
=
4
5
-
4
t2
+
6
t
-1

其中t=m+3,由此知当
1
t
=
3
4
,即t=
4
3
,m=-
5
3
∈(-
5
,-1)
时,
|PQ|
|ST|
取得最大值
2
5
5

②由对称性,可知若1<m<
5
,则当m=
5
3
时,
|PQ|
|ST|
取得最大值
2
5
5

③当-1≤m≤1时,|ST|=2
2
|PQ|
|ST|
=
2
5
5-m2

由此知,当m=0时,
|PQ|
|ST|
取得最大值
2
5
5

综上可知,当m=±
5
3
或m=0时,
|PQ|
|ST|
取得最大值
2
5
5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)以F1、F2为左、右焦点,离心率e=
1
2
,一个短轴的端点(0,
3
);抛物线C2:y2=4mx(m>0),焦点为F2,椭圆C1与抛物线C2的一个交点为P.
(1)求椭圆C1与抛物线C2的方程;
(2)直线l经过椭圆C1的右焦点F2与抛物线C2交于A1,A2两点,如果弦长|A1A2|等于△PF1F2的周长,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,左焦点为F,过原点的直线l交椭圆于M,N两点,△FMN面积的最大值为1.
(1)求椭圆E的方程;
(2)设P,A,B是椭圆E上异于顶点的三点,Q(m,n)是单位圆x2+y2=1上任一点,使
OP
=m
OA
+n
OB

①求证:直线OA与OB的斜率之积为定值;
②求OA2+OB2的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知A(-2,0),B(2,0),P为平面内一动点,直线PA,PB的斜率之积为-
1
4
,记动点P的轨迹为C.
(1)求曲线C的轨迹方程;
(2)若点D(0,2),点M,N是曲线C上的两个动点,且
DM
DN
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的两焦点分别为F1(-2
2
,0)、F2(2
2
,0),长轴长为6,
(1)求椭圆C的标准方程;
(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),F1、F2是其左右焦点,其离心率是
6
3
,P是椭圆上一点,△PF1F2的周长是2(
3
+
2
).
(1)求椭圆的方程;
(2)试对m讨论直线y=2x+m(m∈R)与该椭圆的公共点的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线y=kx与双曲线
x2
a2
-
y2
b2
=1
的左右两支都有交点的充要条件是k∈(-1,1),且该双曲线与直线y=
1
2
x-
3
2
相交所得弦长为
4
15
3
,则该双曲线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在原点,焦点F与双曲线x2-
y2
4
=1
的右顶点重合.
(1)求抛物线的方程;
(2)若直线l经过焦点F,且倾斜角为60°,与抛物线交于A、B两点,求:弦长|AB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
5
2
3

(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为-
1
2
,求斜率k的值;
②已知点M(-
7
3
,0)
,求证:
MA
MB
为定值.

查看答案和解析>>

同步练习册答案