A
分析:把已知的两等式两边平方后,左右相加,然后利用同角三角函数间的基本关系、两角和的正弦函数公式及诱导公式化简后即可得到sinC的值,利用特殊角的三角函数值及角C的范围即可求出C的度数.
解答:由3sinA+4cosB=6①,3cosA+4sinB=1②,
①
2+②
2得:(3sinA+4cosB)
2+(3cosA+4sinB)
2=37,
化简得:9+16+24(sinAcosB+cosAsinB)=37,
即sin(A+B)=sin(π-C)=sinC=

,又C∈(0,π),
所以∠C的大小为

或

,
若C=

π,得到A+B=

,则cosA>

,所以3cosA>

>1,
则3cosA+4sinB>1与3cosA+4sinB=1矛盾,所以C≠

π,
所以满足题意的C的值为

.
故选A
点评:此题考查学生灵活运用同角三角函数间的基本关系化简求值,是一道中档题.本题也是一道易错题,学生容易选择C,原因是没有判断角C为钝角是不可能的.