精英家教网 > 高中数学 > 题目详情

【题目】规定投掷飞镖3次为一轮,3次中至少两次投中8环以上的为优秀.现采用随机模拟实验的方法估计某人投掷飞镖的情况:先由计算器产生随机数01,用0表示该次投镖未在8环以上,用1表示该次投镖在8环以上;再以每三个随机数作为一组,代表一轮的结果.例如:“101”代表第一次投镖在8环以上,第二次投镖未在8环以上,第三次投镖在8环以上,该结果代表这一轮投镖为优秀:"100”代表第一次投镖在8环以上,第二次和第三次投镖均未在8环以上,该结果代表这一轮投镖为不优秀.经随机模拟实验产生了如下10组随机数,据此估计,该选手投掷飞镖两轮,至少有一轮可以拿到优秀的概率是( )

101

111

011

101

010

100

100

011

111

001

A. B. C. D.

【答案】B

【解析】

先用频率估计概率可得该选手每轮拿到优秀的概率,再根据伯努利试验的特点即可求得结果.

模拟实验中,总共进行了10轮,每轮中至少两次投中8环以上的有6轮,用频率估计概率可得该选手每轮拿到优秀的概率为,因此,该选手投掷飞镖两轮,相当于做两次伯努利试验,那么至少有一轮可以拿到优秀的概率.

故本题正确答案为B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动点M到定点F1(2,0)F2(2,0)的距离之和为.

1)求动点M的轨迹C的方程;

2)设N(0,2),过点P(1,-2)作直线l,交曲线C于不同于N的两点AB,直线NANB的斜率分别为k1k2,求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人进行问卷调查.设其中某项问题的选择只有同意不同意两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.

同意

不同意

合计

教师

1

女生

4

男生

2

(1)请完成此统计表;

(2)试估计高三年级学生同意的人数;

(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人同意、一人不同意的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(I)求椭圆的方程;

(Ⅱ)如图,若斜率为的直线轴,椭圆顺次交于点在椭圆左顶点的左侧)且,求证:直线过定点;并求出斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与直线相切.

1)求动圆的圆心轨迹的方程;

2)是否存在直线,使过点(01),并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形,,点OAD的中点,.

1)求证:平面PAD

2)若,求平面PBC与平面PAD所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn

1)求数列{an}的通项公式;

2)若2an+an+11),求数列{ }的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问7分,2小问5分

设函数

1处取得极值,确定的值,并求此时曲线在点处的切线方程;

2上为减函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆心在原点的圆C与直线l1:相切,动直线交圆CAB两点,交y轴于点M.

1)求圆C的方程;

2)求实数km的关系;

3)若点M关于O的对称点为N,圆N的半径为.DAB的中点,DEDF与圆N分别相切于点EF,求的最小值及取最小值时m的取值范围.

查看答案和解析>>

同步练习册答案