精英家教网 > 高中数学 > 题目详情
已知函数,其中a为常数.
(1)当时,求的最大值;
(2)若在区间(0,e]上的最大值为,求a的值;
(3)当时,试推断方程=是否有实数解.
(1)=f(1)=-1;(2)a=;(3)方程|f(x)|=没有实数解.

试题分析:(1)当a=-1时,f(x)=-x+lnx,f′(x)=-1+
由0<x<1时,f′(x)>0;当x>1时,f′(x)<0.
知f(x)在(0,1)上是增函数,在(1,+∞)上是减函数,从而=f(1)=-1.
(2)利用导数确定函数的最大值得,=f=-1+ln
由-1+ln=-3,即得a=.
(3)由(1)知当a=-1时=f(1)=-1,可知|f(x)|≥1;
应用导数研究g(x)=,得到=g(e)=<1,即g(x)<1,
根据|f(x)|>g(x),即|f(x)|>知方程|f(x)|=没有实数解.
试题解析:(1)当a=-1时,f(x)=-x+lnx,f′(x)=-1+
当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数,=f(1)=-14分
(2)∵f′(x)=a+,x∈(0,e],
①若a≥,则f′(x)≥0,f(x)在(0,e]上增函数
=f(e)=ae+1≥0.不合题意 5分
②若a<,则由f′(x)>0>0,即0<x<
由f(x)<0<0,即<x≤e.从而f(x)在上增函数,在为减函数
=f=-1+ln
令-1+ln=-3,则ln=-2∴=,即a=.
<,
∴a=为所求     8分
(3)由(1)知当a=-1时=f(1)=-1,
∴|f(x)|≥1
又令g(x)=,g′(x)=,令g′(x)=0,得x=e,
当0<x<e时,g′(x)>0,g(x)在(0,e)单调递增;当x>e时,g′(x)<0,g(x)在(e,+∞)单调递减∴=g(e)=<1,∴g(x)<1
∴|f(x)|>g(x),即|f(x)|>∴方程|f(x)|=没有实数解.  12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(e为自然对数的底数).
(1)设曲线处的切线为,若与点(1,0)的距离为,求a的值;
(2)若对于任意实数恒成立,试确定的取值范围;
(3)当上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是自然对数的底数,函数.
(1)求函数的单调递增区间;
(2)当时,函数的极大值为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-a2x2+ax(aR).
(l)当a=1时,证明:函数f(x)只有一个零点;
(2)若函数f(x)在区间(1,十)上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某水产养殖场拟造一个无盖的长方体水产养殖网箱,为了避免混养,箱中要安装一些筛网,其平面图如下,如果网箱四周网衣(图中实线部分)建造单价为每米56元,筛网(图中虚线部分)的建造单价为每米48元,网箱底面面积为160平方米,建造单价为每平方米50元,网衣及筛网的厚度忽略不计.
(1)把建造网箱的总造价y(元)表示为网箱的长x(米)的函数,并求出最低造价;
(2)若要求网箱的长不超过15米,宽不超过12米,则当网箱的长和宽各为多少米时,可使总造价最低?(结果精确到0.01米)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某银行准备新设一种定期存款业务,经预测,存款量与存款利率成正比,比例系数为k(k>0),贷款的利率为4.8%,假设银行吸收的存款能够全部贷出去.若存款利率为x(x∈(0,0.048)),则银行可获得最大收益时,存款利率为 (  )
A.0.03
B.0.024
C.0.02
D.0.016

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在高台跳水运动中,运动员相对于水面的高度与起跳后的时间存在函数关系,则瞬时速度为0的时刻是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

8. 设函数fx)在R上可导,其导函数为f ′x),且函数fx)在x=﹣2处取得极小值,则函数y=xf ′x)的图象可能是( )

A                    B                    C                  D

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数的导数为,且,则的值是          .

查看答案和解析>>

同步练习册答案