精英家教网 > 高中数学 > 题目详情
函数f(x)=
cx+d
1+x2
是定义在(-∞,+∞)上的奇函数,且f(1)=
1
2

(1)求实数c和d,并确定函数f(x)的解析式;
(2)判断f(x)在(-1,1)上的单调性,并用定义证明你的结论.
(1)函数f(x)=
cx+d
1+x2
是定义在(-∞,+∞)上的奇函数,
可得f(0)=0,解得d=0.
再由f(1)=
c
2
=
1
2
,可得 c=1.
故函数的解析式为 f(x)=
x
1+x2

(2)由函数的解析式可得函数在(-1,1)上是增函数.
证明:设-1<x1<x2<1,则 f(x1)-f(x2)=
x1
1+x12
-
x2
1+x22
 
=
x1(1+x22)-x2(1+x12)
(1+x12)(1+x22)
=
x1-x2+x1•x2(x2-x1)
(1+x12)(1+x22)
=
( x1-x2)(1-x1x2)
(1+x12)(1+x22)

由题设可得 x1-x2<0,1-x1x2>0,∴
( x1-x2)(1-x1x2)
(1+x12)(1+x22)
<0,
故有f(x1)-f(x2)<0,即 f(x1)<f(x2),故函数在(-1,1)上是增函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
cx+1(0<x<c)
2-
x
c2
+1(c≤x<1)
满足f(c2)=
9
8

(1)求常数c的值;
(2)解不等式f(x)>
2
8
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
cx+d
1+x2
是定义在(-∞,+∞)上的奇函数,且f(1)=
1
2

(1)求实数c和d,并确定函数f(x)的解析式;
(2)判断f(x)在(-1,1)上的单调性,并用定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
cx+1,  (1<x<c )
2-
x
c2
+1, (x≥c)
满足f(c3)=
9
8

(1)求常数c的值;
(2)解关于x的不等式f(x)<4
2
+1

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省珠海市高三(上)开学摸底数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=+cx+d(a,c,d∈R)满足f(0)=0,f'(1)=0,且f'(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若,解不等式f'(x)+h(x)<0;
(3)是否存在实数m,使函数g(x)=f'(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年陕西省高考数学全真预测试卷(解析版) 题型:解答题

已知函数f(x)=+cx+d(a,c,d∈R)满足f(0)=0,f'(1)=0,且f'(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若,解不等式f'(x)+h(x)<0;
(3)是否存在实数m,使函数g(x)=f'(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案