【题目】已知
是定义在
上的偶函数,且
时,
.
(1)求
,
;
(2)求函数
的解析式;
(3)若
,求实数
的取值范围.
【答案】(1)0,-1
(2)![]()
(3)![]()
【解析】
试题(1)代入x的值,求出函数值即可;
(2)根据函数的奇偶性求出函数的解析式即可;
(3)通过讨论a的范围,得到关于a的不等式,解出即可.
试题解析:
(1)因为当x≤0时,f(x)=log
(-x+1),
所以f(0)=0.
又因为函数f(x)是定义在R上的偶函数,
所以f(1)=f(-1)=log
[-(-1)+1]=log
2=-1,
即f(1)=-1.
(2)令x>0,则-x<0,
从而f(-x)=log
(x+1)=f(x),
∴x>0时,f(x)=log
(x+1).
∴函数f(x)的解析式为f(x)=![]()
(3)设x1,x2是任意两个值,且x1<x2≤0,
则-x1>-x2≥0,
∴1-x1>1-x2>0.
∵f(x2)-f(x1)=log
(-x2+1)-log
(-x1+1)=log![]()
>log
1=0,
∴f(x2)>f(x1),
∴f(x)=log
(-x+1)在(-∞,0]上为增函数.
又∵f(x)是定义在R上的偶函数,
∴f(x)在(0,+∞)上为减函数.
∵f(a-1)<-1=f(1),
∴|a-1|>1,解得a>2或a<0.
故实数a的取值范围为(-∞,0)∪(2,+∞).
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且![]()
![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱锥P-ABCD的体积为
,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数),其中
.
(1)在区间
上,
是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
(2)若函数
的两个极值点为
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对下列命题:
①直线
与函数
的图象相交,则相邻两交点的距离为
;
②点
是函数
的图象的一个对称中心;
③函数
在
上单调递减,则
的取值范围为
;
④函数
若
对
R恒成立,则
.
其中所有正确命题的序号为____
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线
的焦点为F,已知直线
与抛物线C交于A,B两点(A,B两点分别在
轴的上、下方).
(1)求证:
;
(2)已知弦长
,试求:过A,B两点,且与直线
相切的圆D的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人各射击1 次击中目标的概率分别三分之二和四分之三,假设两人射击是否击中目标相互之间没有影响,每次射击是否击中目标相互之间也没有影响.
(1)求甲射击4次,至少有1次未击中目标的概率.
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.
(3)假设某人连续2次未击中目标,则停止射击,问:乙恰好射击5次后被终止射击的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方形
中,
,
分别为棱
和棱
的中点,则下列说法正确的是( )
A.
∥平面
B.平面
截正方体所得截面为等腰梯形
C.
平面
D.异面直线
与
所成的角为60°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com