精英家教网 > 高中数学 > 题目详情
5.在△ABC中,AB=AC=1,$BC=\sqrt{3}$,则向量$\overrightarrow{AC}$在$\overrightarrow{AB}$方向上的投影为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 根据余弦定理求出角A的大小,结合向量投影的定义进行求解即可.

解答 解:∵△ABC中,AB=AC=1,BC=$\sqrt{3}$,
∴cosA=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2•AB•AC}$=$\frac{1+1-3}{2×1×1}$=-$\frac{1}{2}$,
∴A=120°,
∴向量$\overrightarrow{AC}$在$\overrightarrow{AB}$方向上的投影为$\frac{\overrightarrow{AC}•\overrightarrow{AB}}{|\overrightarrow{AB}|}$=$\frac{1×1×cos120°}{1}$=-$\frac{1}{2}$,
故选:A.

点评 本题主要考查向量投影的计算,根据定义转化向量数量积是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.用数学归纳法证明“$1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2^n}<f(n)$”时,由n=k不等式成立,证明n=k+1时,左边应增加的项数是(  )
A.2k-1B.2k-1C.2kD.2k+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-x2+2x+3,x∈[-1,2)
(1)画出函数f(x)的图象; 
(2)根据函数f(x)的图象写出函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥C-ABB1A1内接于圆柱OO1,且A1A,B1B都垂直于底面圆O,BC过底面圆心O,M,N分别是棱AA1,CB1的中点,MN⊥平面CBB1
(1)证明:MN∥平面ABC;
(2)求四棱锥C-ABB1A1与圆柱OO1的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若向量$\overrightarrow{a}$=(1,1)与$\overrightarrow{b}$=(λ,-2)的夹角为钝角,则λ的取值范围是(-∞,-2)∪(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=-x2+2x+3在区间[0,4)上的值域是(  )
A.[-5,3]B.[-5,4]C.(-5,3]D.(-5,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:
(1)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{0.1^{-2}}$
(2)已知x+x-1=3,求$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}+{x^{-2}}+3}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=$\frac{\sqrt{2}}{2}$AB.
(Ⅰ)证明:BC1∥平面A1CD
(Ⅱ)求点C1到平面DA1C的距离.
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当P沿着A-B-C-M运动时,以点P经过的路程x为自变量,三角形APM的面积为y的函数,则y=f(x)的图象形状大致是下列图中的(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案