精英家教网 > 高中数学 > 题目详情
10.函数y=-x2+2x+3在区间[0,4)上的值域是(  )
A.[-5,3]B.[-5,4]C.(-5,3]D.(-5,4]

分析 由函数的解析式,我们可以分析函数的开口方向及对称轴,结合二次函数的性质,易求出函数的最大值和最小值,进而得到函数的值域.

解答 解:函数y=-x2+2x+3的图象是开口朝下,且以x=1为对称轴的抛物线
故在区间[0,4)
当x=1时,ymax=-1+2+3=4
当x=4时,ymin=-16+8+3=-5
故函数y=-x2+2x+3在区间[0,4)上的值域为(-5,4].
故选:D

点评 本题考查的知识点二次函数在闭区间上的最值,其中分析出函数的图象和性质进而分析出函数的最值,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+sinx+ex•cosx
(1)求该函数的导数f′(x)
(2)求函数f(x)在x=0处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把二进制数101011(2)化为十进制数(  )
A.41B.43C.45D.46

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数f(x)=sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,则函数g(x) 的一个单调递增区间是(  )
A.[-$\frac{π}{4}$,$\frac{π}{4}$]B.[$\frac{π}{4}$,$\frac{3π}{4}$]C.[-$\frac{π}{3}$,$\frac{π}{6}$]D.[$\frac{π}{6}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,AB=AC=1,$BC=\sqrt{3}$,则向量$\overrightarrow{AC}$在$\overrightarrow{AB}$方向上的投影为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.集合A={x|x2-2x>0},B={y|y=2x,x∈R},R是实数集,则(∁RB)∪A等于(  )
A.RB.(-∞,0]∪(2,+∞)C.(0,1]D.(-∞,1]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图在直角梯形ABCD中AB=2AD=2DC,E为BC边上一点,$\overrightarrow{BC}=3\overrightarrow{EC}$,F为AE的中点,则$\overrightarrow{BF}$=(  )
A.$\frac{1}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AD}$B.$\frac{2}{3}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD}$C.$-\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$D.$-\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设 f(x)=2x-1,g(x)=x+1,则 f[g(x)]=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABCF.在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则t的取值范围是(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{2}$,1)C.($\frac{\sqrt{3}}{2}$,2)D.($\frac{\sqrt{3}}{2}$,1)

查看答案和解析>>

同步练习册答案