精英家教网 > 高中数学 > 题目详情
12.已知集合A={x|-1<x<2},B={x|-2≤x<0},则A∩B=(  )
A.{x|-1<x<0}B.{x|-2≤x<2}C.{x|-2<x<2}D.{x|x<-2,或x≥2}

分析 由题意和交集的运算直接求出A∩B.

解答 解:因为集合集合A={x|-1<x<2},B={x|-2≤x<0},
所以A∩B={x|-1<x<0},
故选:A.

点评 本题考查了交集及其运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若α∈($\frac{3π}{2}$,2π),化简$\sqrt{1-sinα}$+$\sqrt{1+sinα}$=$-2cos\frac{α}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知命题p:方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{m}$=1表示焦点在y轴上的椭圆;命题q:?x∈R,4x2-4mx+4m-3≥0.若(¬p)∧q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\frac{π}{2}$cosx,则f′($\frac{π}{2}$)=(  )
A.-$\frac{π}{2}$B.1C.0D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是(  )
A.5、3、0.8B.10、6、0.8C.5、3、0.6D.10、6、0.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知方程x2+ax+b=0.
(1)若方程的解集只有一个元素,求实数a,b满足的关系式;
(2)若方程的解集有两个元素分别为1,3,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在边长为3的正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图(1)将△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图(2)).
(1)求证:A1E⊥平面BEP;
(2)求二面角B-A1P-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2cos2x+2$\sqrt{3}sinxcosx(x∈{R})$.
(1)求函数f(x)的单调递增区间;
(2)若方程f(x)-t=1在$x∈[0,\frac{π}{2}]$内恒有两个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,右焦点为F,椭圆与y轴的正半轴交于点B,且|BF|=$\sqrt{2}$.
(1)求椭圆E的方程;
(2)若斜率为1的直线l经过点(1,0),与椭圆E相交于不同的两点M,N,在椭圆E上是否存在点P,使得△PMN的面积为$\frac{{2\sqrt{2}}}{3}$,请说明理由.

查看答案和解析>>

同步练习册答案